Jordan Wesolowski
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jordan Wesolowski.
PLOS ONE | 2009
Fabienne Paumet; Jordan Wesolowski; Alejandro Garcia-Diaz; Cédric Delevoye; Nathalie Aulner; Howard A. Shuman; Agathe Subtil
Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that IncA and IcmG/DotF, two SNARE-like proteins respectively expressed by Chlamydia and Legionella, inhibit the endocytic SNARE machinery. Furthermore, we identified that the SNARE-like motif present in these bacterial proteins encodes the inhibitory function. This finding suggests that SNARE-like motifs are capable of specifically manipulating membrane fusion in a wide variety of biological environments. Ultimately, this motif may have been selected during evolution because it is an efficient structural motif for modifying eukaryotic membrane fusion and thus contribute to pathogen survival.
Microbes and Infection | 2014
Sandra Bonne-Année; Laura A. Kerepesi; Jessica A. Hess; Jordan Wesolowski; Fabienne Paumet; James B. Lok; Thomas J. Nolan; David Abraham
Neutrophils are multifaceted cells that are often the immune systems first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system.
Immunologic Research | 2011
Jordan Wesolowski; Fabienne Paumet
In developed countries, the prevalence of allergy is on the rise. Although the causes are unknown, it seems that (1) the disappearance of microbiota may play a role in the increase of allergies and (2) exposure to bacterial infections during childhood decreases the incidence of allergies. Although several cell types are involved in the development of allergy, mast cells play a major role in orchestrating inflammation. Upon activation, mast cell secretory granules fuse with the plasma membrane, resulting in the release of a number of inflammatory mediators. In addition to allergy, mast cells contribute to the innate immune response against a variety of bacteria. This is accomplished through the secretion of cytokines and other soluble mediators. Interestingly, there is growing evidence that mast cells exposed to bacteria down-regulate degranulation in response to IgE/Allergen stimulation. This inhibitory effect seems to require direct contact between bacteria and mast cells, but the intracellular mechanism by which bacterial contact suppresses allergic responses is unknown. Here, we review different aspects of mast cell physiology and discuss hypotheses as to how bacteria may influence mast cell degranulation.
PLOS ONE | 2012
Jordan Wesolowski; Vernon Caldwell; Fabienne Paumet
Mast cells play a critical role in the innate immune response to bacterial infection. They internalize and kill a variety of bacteria and process antigen for presentation to T cells via MHC molecules. Although mast cell phagocytosis appears to play a significant role during bacterial infection, little is known about the proteins involved in its regulation. In this study, we demonstrate that the SNARE protein SNAP29 is involved in mast cell phagocytosis. SNAP29 is localized in the endocytic pathway and is transiently recruited to Escherichia coli (E. coli)-containing phagosomes. Interestingly, overexpression of SNAP29 significantly increases the internalization and killing of E. coli, while it does not affect mast cell exocytosis of inflammatory mediators. To our knowledge, these data are the first to demonstrate a novel function of SNAP29 in mast cell phagocytosis and have implications in protection against bacterial infection.
Journal of Bacteriology | 2016
Mary M. Weber; Nicholas F. Noriea; Laura D. Bauler; Jennifer Lam; Janet Sager; Jordan Wesolowski; Fabienne Paumet; Ted Hackstadt
UNLABELLED Chlamydia trachomatis is an obligate intracellular pathogen that is the etiological agent of a variety of human diseases, including blinding trachoma and sexually transmitted infections. Chlamydiae replicate within a membrane-bound compartment, termed an inclusion, which they extensively modify by the insertion of type III secreted proteins called Inc proteins. IncA is an inclusion membrane protein that encodes two coiled-coil domains that are homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) motifs. Recent biochemical evidence suggests that a functional core, composed of SNARE-like domain 1 (SLD-1) and part of SNARE-like domain 2 (SLD-2), is required for the characteristic homotypic fusion of C. trachomatis inclusions in multiply infected cells. To verify the importance of IncA in homotypic fusion in Chlamydia, we generated an incA::bla mutant. Insertional inactivation of incA resulted in the formation of nonfusogenic inclusions, a phenotype that was completely rescued by complementation with full-length IncA. Rescue of homotypic inclusion fusion was dependent on the presence of the functional core consisting of SLD-1 and part of SLD-2. Collectively, these results confirm in vitro membrane fusion assays identifying functional domains of IncA and expand the genetic tools available for identification of chlamydia with a method for complementation of site-specific mutants. IMPORTANCE Chlamydia trachomatis replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusions are nonfusogenic with vesicles in the endocytic pathway but, in multiply infected cells, fuse with each other to form a single large inclusion. This homotypic fusion is dependent upon the presence of a chlamydial inclusion membrane-localized protein, IncA. Specificity of membrane fusion in eukaryotic cells is regulated by SNARE (soluble N-ethylmaleimide sensitive factor attachment receptor) proteins on the cytosolic face of vesicles and target membranes. IncA contains two SNARE-like domains. Newly developed genetic tools for the complementation of targeted mutants in C. trachomatis are used to confirm the minimal requirement of SNARE-like motifs necessary to promote the homotypic fusion of inclusions.
Traffic | 2014
Jordan Wesolowski; Fabienne Paumet
Mast cells orchestrate the allergic response through the release of proinflammatory mediators, which is driven by the fusion of cytoplasmic secretory granules with the plasma membrane. During this process, SNARE proteins including Syntaxin4, SNAP23 and VAMP8 play a key role. Following stimulation, the kinase IKKβ interacts with and phosphorylates the t‐SNARE SNAP23. Phosphorylated SNAP23 then associates with Syntaxin4 and the v‐SNARE VAMP8 to form a ternary SNARE complex, which drives membrane fusion and mediator release. Interestingly, mast cell degranulation is impaired following exposure to bacteria such as Escherichia coli. However, the molecular mechanism(s) by which this occurs is unknown. Here, we show that E. coli exposure rapidly and additively inhibits degranulation in the RBL‐2H3 rat mast cell line. Following co‐culture with E. coli, the interaction between IKKβ and SNAP23 is disrupted, resulting in the hypophosphorylation of SNAP23. Subsequent formation of the ternary SNARE complex between SNAP23, Syntaxin4 and VAMP8 is strongly reduced. Collectively, these results demonstrate that E. coli exposure inhibits the formation of VAMP8‐containing exocytic SNARE complexes and thus the release of VAMP8‐dependent granules by interfering with SNAP23 phosphorylation.
Journal of Biological Chemistry | 2014
Erik Ronzone; Jordan Wesolowski; Laura D. Bauler; Anshul Bhardwaj; Ted Hackstadt; Fabienne Paumet
Background: The inclusion protein IncA inhibits and activates membrane fusion events during infection. Results: In vitro assays and dominant negative Chlamydia mutants show that a protease-resistant core of IncA forms dimers and encodes both functions of IncA. Conclusion: IncA forms stable coiled-coils to manipulate membrane fusion. Significance: This project provides the most detailed understanding of how a chlamydial inclusion protein operates to manipulate membrane fusion. Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2.
F1000Research | 2017
Jordan Wesolowski; Fabienne Paumet
Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.
Archive | 2012
Erik Ronzone; Jordan Wesolowski; Fabienne Paumet
Chlamydia infections are associated with a wide range of diseases. C. trachomatis (serovars A, B, Ba and C) causes trachoma, the world’s leading cause of infectious blindness. Serovars D through K are most commonly associated with sexually transmitted diseases and can cause infertility in women if left untreated [Paavonen and Eggert-Kruse, 1999]. Sexually transmitted diseases (STDs) are prevalent in every society in the world, including in developed countries (United States Centers for Disease Control [CDC]). Therefore, they represent a serious public health concern. Public programs aimed at increasing people’s awareness of the risks these pathogens pose have helped in controlling the spread of disease. Nevertheless, Chlamydia is still the most frequently reported STD in the United States. In 2009, 1.2 million new cases of Chlamydia infections were reported in the United States alone, but the actual number of infections is estimated to be higher due to a large number of unreported cases (CDC). Vaccination is the gold standard for disease prevention, but despite years of research, no vaccines exist for bacterial STDs. The typical course of treatment for Chlamydia infections involves the use of antibiotics, but there is emerging evidence that non-specific antibacterial agents can cause lasting damage to an individual by adversely affecting the homeostasis of the microbiota, which is the collection of bacteria that positively affect normal human functioning [Stewardson et al., 2011].
Virulence | 2010
Jordan Wesolowski; Fabienne Paumet