Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Howard A. Shuman is active.

Publication


Featured researches published by Howard A. Shuman.


PLOS Pathogens | 2008

Legionella eukaryotic-like type IV substrates interfere with organelle trafficking.

Karim Suwwan de Felipe; Robert T. Glover; Xavier Charpentier; O. Roger Anderson; Moraima Reyes; Christopher Pericone; Howard A. Shuman

Legionella pneumophila, the causative agent of Legionnaires disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation.


Frontiers in Microbiology | 2011

Legionella Pneumophila Transcriptome during Intracellular Multiplication in Human Macrophages

Sébastien P. Faucher; Catherine A. Mueller; Howard A. Shuman

Legionella pneumophila is the causative agent of Legionnaires’ disease, an acute pulmonary infection. L. pneumophila is able to infect and multiply in both phagocytic protozoa, such as Acanthamoeba castellanii, and mammalian professional phagocytes. The best-known L. pneumophila virulence determinant is the Icm/Dot type IVB secretion system, which is used to translocate more than 150 effector proteins into host cells. While the transcriptional response of Legionella to the intracellular environment of A. castellanii has been investigated, much less is known about the Legionella transcriptional response inside human macrophages. In this study, the transcriptome of L. pneumophila was monitored during exponential and post-exponential phase in rich AYE broth as well as during infection of human cultured macrophages. This was accomplished with microarrays and an RNA amplification procedure called selective capture of transcribed sequences to detect small amounts of mRNA from low numbers of intracellular bacteria. Among the genes induced intracellularly are those involved in amino acid biosynthetic pathways leading to l-arginine, l-histidine, and l-proline as well as many transport systems involved in amino acid and iron uptake. Genes involved in catabolism of glycerol are also induced during intracellular growth, suggesting that glycerol could be used as a carbon source. The genes encoding the Icm/Dot system are not differentially expressed inside cells compared to control bacteria grown in rich broth, but the genes encoding several translocated effectors are strongly induced. Moreover, we used the transcriptome data to predict previously unrecognized Icm/Dot effector genes based on their expression pattern and confirmed translocation for three candidates. This study provides a comprehensive view of how L. pneumophila responds to the human macrophage intracellular environment.


Cellular Microbiology | 2009

The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors

Irina S. Franco; Howard A. Shuman; Xavier Charpentier

Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram‐negative γ‐proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires disease, a severe pneumonia. L.u2003pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L.u2003pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L.u2003pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L.u2003pneumophila is thought to parasitize free‐living protists, which may have selected for traits that promote virulence of L.u2003pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L.u2003pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections.


PLOS Pathogens | 2009

Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila.

Xavier Charpentier; Joëlle E. Gabay; Moraima Reyes; Jing W. Zhu; Arthur Weiss; Howard A. Shuman

Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions.


PLOS ONE | 2009

Intracellular bacteria encode inhibitory SNARE-like proteins.

Fabienne Paumet; Jordan Wesolowski; Alejandro Garcia-Diaz; Cédric Delevoye; Nathalie Aulner; Howard A. Shuman; Agathe Subtil

Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that IncA and IcmG/DotF, two SNARE-like proteins respectively expressed by Chlamydia and Legionella, inhibit the endocytic SNARE machinery. Furthermore, we identified that the SNARE-like motif present in these bacterial proteins encodes the inhibitory function. This finding suggests that SNARE-like motifs are capable of specifically manipulating membrane fusion in a wide variety of biological environments. Ultimately, this motif may have been selected during evolution because it is an efficient structural motif for modifying eukaryotic membrane fusion and thus contribute to pathogen survival.


Cellular Microbiology | 2007

Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila.

John Chen; Moraima Reyes; Margaret Clarke; Howard A. Shuman

Legionella pneumophila is the Gram‐negative bacterial agent of Legionnaires disease, an acute, often fatal pneumonia. L.u2003pneumophila infects alveolar macrophages, evading the antimicrobial defences of the phagocyte by preventing fusion of the phagosome with lysosomes and avoiding phagosome acidification. The bacteria then modulate the composition of the vacuole so that it takes on the characteristics of the endoplasmic reticulum. Similar events occur when the bacteria infect unicellular protozoa. It is thought that replication in fresh water protozoa provides an environmental reservoir for the organism. Several effector proteins are delivered to the host by the Icm/Dot type IV secretion system (TFSS). Some of these have been shown to participate in the trafficking of the Legionella phagosome. Here we describe the ability of the Icm/Dot TFSS to translocate two effectors, LepA and LepB, that play a role in the non‐lytic release of Legionella from protozoa. We report that translocation of the Lep proteins is inhibited by agents that depolymerize actin filaments and that effectors may be secreted into the extracellular medium upon cell contact. Depletion of the Lep proteins by deletion of their genes results in increased ability to lyse red blood cells. In contrast, overexpression of Lep‐containing hybrid proteins appears to specifically inhibit the activity of the Icm/Dot TFSS and may prevent the delivery of other effectors that are critical for intracellular multiplication.


Journal of Bacteriology | 2008

Loss of RNase R Induces Competence Development in Legionella pneumophila

Xavier Charpentier; Sébastien P. Faucher; Sergey Kalachikov; Howard A. Shuman

RNase R is a processive 3-5 exoribonuclease with a high degree of conservation in prokaryotes. Although some bacteria possess additional hydrolytic 3-5 exoribonucleases such as RNase II, RNase R was found to be the only predicted one in the facultative intracellular pathogen Legionella pneumophila. This provided a unique opportunity to study the role of RNase R in the absence of an additional RNase with similar enzymatic activity. We investigated the role of RNase R in the biology of Legionella pneumophila under various conditions and performed gene expression profiling using microarrays. At optimal growth temperature, the loss of RNase R had no major consequence on bacterial growth and had a moderate impact on normal gene regulation. However, at a lower temperature, the loss of RNase R had a significant impact on bacterial growth and resulted in the accumulation of structured RNA degradation products. Concurrently, gene regulation was affected and specifically resulted in an increased expression of the competence regulon. Loss of the exoribonuclease activity of RNase R was sufficient to induce competence development, a genetically programmed process normally triggered as a response to environmental stimuli. The temperature-dependent expression of competence genes in the rnr mutant was found to be independent of previously identified competence regulators in Legionella pneumophila. We suggest that a physiological role of RNase R is to eliminate structured RNA molecules that are stabilized by low temperature, which in turn may affect regulatory networks, compromising adaptation to cold and thus resulting in decreased viability.


PLOS Pathogens | 2012

The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking.

Irina Saraiva Franco; Nadim Shohdy; Howard A. Shuman

Legionella pneumophila, the causative agent of Legionnaires disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.


Mbio | 2011

Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila

Assaf Levi; Marc Folcher; Urs Jenal; Howard A. Shuman

ABSTRACT Proteins that metabolize or bind the nucleotide second messenger cyclic diguanylate regulate a wide variety of important processes in bacteria. These processes include motility, biofilm formation, cell division, differentiation, and virulence. The role of cyclic diguanylate signaling in the lifestyle of Legionella pneumophila, the causative agent of Legionnaires’ disease, has not previously been examined. The L. pneumophila genome encodes 22 predicted proteins containing domains related to cyclic diguanylate synthesis, hydrolysis, and recognition. We refer to these genes as cdgS (cyclic diguanylate signaling) genes. Strains of L. pneumophila containing deletions of all individual cdgS genes were created and did not exhibit any observable growth defect in growth medium or inside host cells. However, when overexpressed, several cdgS genes strongly decreased the ability of L. pneumophila to grow inside host cells. Expression of these cdgS genes did not affect the Dot/Icm type IVB secretion system, the major determinant of intracellular growth in L. pneumophila. L. pneumophila strains overexpressing these cdgS genes were less cytotoxic to THP-1 macrophages than wild-type L. pneumophila but retained the ability to resist grazing by amoebae. In many cases, the intracellular-growth inhibition caused by cdgS gene overexpression was independent of diguanylate cyclase or phosphodiesterase activities. Expression of the cdgS genes in a Salmonella enterica serovar Enteritidis strain that lacks all diguanylate cyclase activity indicated that several cdgS genes encode potential cyclases. These results indicate that components of the cyclic diguanylate signaling pathway play an important role in regulating the ability of L. pneumophila to grow in host cells. IMPORTANCE All bacteria must sense and respond to environmental cues. Intracellular bacterial pathogens must detect and respond to host functions that limit their ability to carry out a successful infection. Small-molecule second messengers play key roles in transmitting signals from environmental receptors to the proteins and other components that respond to signals. Cyclic diguanylate is a ubiquitous bacterial second messenger known to play an important role in many sensing and signaling systems in bacteria. The causative agent of Legionnaires’ disease, Legionella pneumophila, is an intracellular pathogen that grows inside environmental protists and human macrophages by subverting the normal processes that these cells use to capture and destroy bacteria. We show that the several cyclic diguanylate signaling components in Legionella play a role in the ability to grow inside both kinds of host cells. This work highlights the role of cyclic diguanylate signaling during intracellular growth. All bacteria must sense and respond to environmental cues. Intracellular bacterial pathogens must detect and respond to host functions that limit their ability to carry out a successful infection. Small-molecule second messengers play key roles in transmitting signals from environmental receptors to the proteins and other components that respond to signals. Cyclic diguanylate is a ubiquitous bacterial second messenger known to play an important role in many sensing and signaling systems in bacteria. The causative agent of Legionnaires’ disease, Legionella pneumophila, is an intracellular pathogen that grows inside environmental protists and human macrophages by subverting the normal processes that these cells use to capture and destroy bacteria. We show that the several cyclic diguanylate signaling components in Legionella play a role in the ability to grow inside both kinds of host cells. This work highlights the role of cyclic diguanylate signaling during intracellular growth.


Microbiology | 2013

Analysis of the transcriptome of Legionella pneumophila hfq mutant reveals a new mobile genetic element.

Hana Trigui; Paulina Dudyk; Janet Sum; Howard A. Shuman; Sebastien P. Faucher

Hfq is a small RNA-binding protein involved in the post-transcriptional regulation of gene expression by affecting the stability of the mRNA and by mediating efficient pairing between small regulatory RNAs and their target mRNAs. In Legionella pneumophila, the aetiological agent of Legionnaires disease, mutation of hfq results in increased duration of the lag phase and reduced growth in low-iron medium. In an effort to uncover genes potentially regulated by Hfq, the transcriptome of an hfq mutant strain was compared to that of the wild-type. Unexpectedly, many genes located within a 100 kb genomic island, including a section of the previously identified efflux island, were overexpressed in the hfq mutant strain. Since this island contains a putative conjugative system and an integrase, it was postulated that it could be a new integrated mobile genetic element. PCR analysis revealed that this region exists both as an integrated and as an episomal form in the cell population and that it undergoes differential excision in the hfq mutant background, which was further confirmed by trans-complementation of the hfq mutation. This new plasmid-like element was named pLP100. Differential excision did not affect the copy number of pLP100 at the population level. This region contains a copper efflux pump encoded by copA, and increased resistance to copper was observed for the hfq mutant strain that was abrogated in the complemented strain. A strain carrying a mutation of hfq and a deletion of the right side recombination site, attR, showed that overexpression of pLP100 genes and increased copper resistance in the hfq mutant strain were dependent upon excision of pLP100.

Collaboration


Dive into the Howard A. Shuman's collaboration.

Top Co-Authors

Avatar

Xavier Charpentier

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Moraima Reyes

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadim Shohdy

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien P. Faucher

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur Weiss

University of California

View shared research outputs
Top Co-Authors

Avatar

Assaf Levi

Columbia University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge