Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordi Juárez-Jiménez is active.

Publication


Featured researches published by Jordi Juárez-Jiménez.


Journal of Medicinal Chemistry | 2011

Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease

Irene Bolea; Jordi Juárez-Jiménez; Cristóbal de los Ríos; Mourad Chioua; Ramon Pouplana; F. Javier Luque; Mercedes Unzeta; José Marco-Contelles; Abdelouahid Samadi

A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.2±1.1 nM) and MAO-B (IC50=43±8.0 nM) and is a moderately potent inhibitor of AChE (IC50=0.35±0.01 μM) and BuChE (IC50=0.46±0.06 μM). Moreover, molecular modeling and kinetic studies support the dual binding site to AChE, which explains the inhibitory effect exerted on Aβ aggregation. Overall, the results suggest that the new compounds are promising multitarget drug candidates with potential impact for Alzheimers disease therapy.


Journal of Medicinal Chemistry | 2014

Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents.

Elisabet Viayna; Irene Sola; Manuela Bartolini; Angela De Simone; Cheril Tapia-Rojas; Felipe G. Serrano; Raimon Sabaté; Jordi Juárez-Jiménez; Belén Pérez; F. Javier Luque; Vincenza Andrisano; M. Victòria Clos; Nibaldo C. Inestrosa; Diego Muñoz-Torrero

We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimers disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase, butyrylcholinesterase, and BACE-1, dual Aβ42 and tau antiaggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction, preventing the loss of synaptic proteins and/or have a positive effect on the induction of long-term potentiation. In vivo studies in APP-PS1 transgenic mice treated ip for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.


Journal of Medicinal Chemistry | 2011

Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus

María D. Duque; Chunlong Ma; Eva Torres; Jun Wang; Lieve Naesens; Jordi Juárez-Jiménez; Pelayo Camps; F. Javier Luque; William F. DeGrado; Robert A. Lamb; Lawrence H. Pinto; Santiago Vázquez

Amantadine inhibits the M2 proton channel of influenza A virus, yet its clinical use has been limited by the rapid emergence of amantadine-resistant virus strains. We have synthesized and characterized a series of polycyclic compounds designed as ring-contracted or ring-expanded analogues of amantadine. Inhibition of the wild-type (wt) M2 channel and the A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Several bisnoradamantane and noradamantane derivatives inhibited the wt ion channel. The compounds bind to a primary site delineated by Val27, Ala30, and Ser31, though ring expansion restricts the positioning in the binding site. Only the smallest analogue 8 was found to inhibit the S31N mutant ion channel. The structure-activity relationship obtained by TEV assay was confirmed by plaque reduction assays with A/H3N2 influenza virus carrying wt M2 protein.


Journal of Medicinal Chemistry | 2014

Easily accessible polycyclic amines that inhibit the wild-type and amantadine-resistant mutants of the M2 channel of influenza A virus

Matias Rey-Carrizo; Marta Barniol-Xicota; Chunlong Ma; Marta Frigolé-Vivas; Eva Torres; Lieve Naesens; Salomé Llabrés; Jordi Juárez-Jiménez; F. J. Luque; William F. DeGrado; Robert A. Lamb; Lawrence H. Pinto; Santiago Vázquez

Amantadine inhibits the M2 proton channel of influenza A virus, yet most of the currently circulating strains of the virus carry mutations in the M2 protein that render the virus amantadine-resistant. While most of the research on novel amantadine analogues has revolved around the synthesis of novel adamantane derivatives, we have recently found that other polycyclic scaffolds effectively block the M2 proton channel, including amantadine-resistant mutant channels. In this work, we have synthesized and characterized a series of pyrrolidine derivatives designed as analogues of amantadine. Inhibition of the wild-type M2 channel and the A/M2-S31N, A/M2-V27A, and A/M2-L26F mutant forms of the channel were measured in Xenopus oocytes using two-electrode voltage clamp assays. Most of the novel compounds inhibited the wild-type ion channel in the low micromolar range. Of note, two of the compounds inhibited the amantadine-resistant A/M2-V27A and A/M2-L26F mutant ion channels with submicromolar and low micromolar IC50, respectively. None of the compounds was found to inhibit the S31N mutant ion channel.


European Journal of Medicinal Chemistry | 2014

Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies.

Ornella Di Pietro; F. Javier Pérez-Areales; Jordi Juárez-Jiménez; Alba Espargaró; M. Victòria Clos; Belén Pérez; Rodolfo Lavilla; Raimon Sabaté; F. Javier Luque; Diego Muñoz-Torrero

Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5b-d have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5a-d has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5a-d, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities.


Biochimica et Biophysica Acta | 2014

Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: role of Asn181 and Ile335 validated by spectroscopic and computational studies.

Jordi Juárez-Jiménez; Eduarda Mendes; Carles Galdeano; Carla Martins; Daniel B. Silva; José Marco-Contelles; Maria do Carmo Carreiras; F. Javier Luque; Rona R. Ramsay

Since cyanide potentiates the inhibitory activity of several monoamine oxidase (MAO) inhibitors, a series of carbonitrile-containing aminoheterocycles was examined to explore the role of nitriles in determining the inhibitory activity against MAO. Dicarbonitrile aminofurans were found to be potent, selective inhibitors against MAO A. The origin of the MAO A selectivity was identified by combining spectroscopic and computational methods. Spectroscopic changes induced in MAO A by mono- and dicarbonitrile inhibitors were different, providing experimental evidence for distinct binding modes to the enzyme. Similar differences were also found between the binding of dicarbonitrile compounds to MAO A and to MAO B. Stabilization of the flavin anionic semiquinone by monocarbonitrile compounds, but destabilization by dicarbonitriles, provided further support to the distinct binding modes of these compounds and their interaction with the flavin ring. Molecular modeling studies supported the role played by the nitrile and amino groups in anchoring the inhibitor to the binding cavity. In particular, the results highlight the role of Asn181 and Ile335 in assisting the interaction of the nitrile-containing aminofuran ring. The network of interactions afforded by the specific attachment of these functional groups provides useful guidelines for the design of selective, reversible MAO A inhibitors.


European Journal of Medicinal Chemistry | 2015

New polycyclic dual inhibitors of the wild type and the V27A mutant M2 channel of the influenza A virus with unexpected binding mode.

Matias Rey-Carrizo; Sabrina Gazzarrini; Salomé Llabrés; Marta Frigolé-Vivas; Jordi Juárez-Jiménez; Mercè Font-Bardia; Lieve Naesens; Anna Moroni; F. Javier Luque; Santiago Vázquez

Two new polycyclic scaffolds were synthesized and evaluated as anti-influenza A compounds. The 5-azapentacyclo[6.4.0.0(2,10).0(3,7).0(9,11)]dodecane derivatives were only active against the wild-type M2 channel in the low-micromolar range. However, some of the 14-azaheptacyclo[8.6.1.0(2,5).0(3,11).0(4,9).0(6,17).0(12,16)]heptadecane derivatives were dual inhibitors of the wild-type and the V27A mutant M2 channels. The antiviral activity of these molecules was confirmed by cell culture assays. Their binding mode was analysed through molecular dynamics simulations, which showed the existence of distinct binding modes in the wild type M2 channel and its V27A variant.


Journal of Dairy Science | 2015

The complex of hypericin with β-lactoglobulin has antimicrobial activity with potential applications in dairy industry

Beatriz Rodríguez-Amigo; Pietro Delcanale; Gabriel Rotger; Jordi Juárez-Jiménez; Stefania Abbruzzetti; Andrea Summer; Montserrat Agut; F. Javier Luque; Santi Nonell; Cristiano Viappiani

Using a combination of molecular modeling and spectroscopic experiments, the naturally occurring, pharmacologically active hypericin compound is shown to form a stable complex with the dimeric form of β-lactoglobulin (β-LG). Binding is predicted to occur at the narrowest cleft found at the interface between monomers in the dimeric β-LG. The complex is able to preserve the fluorescence and singlet oxygen photosensitizing properties of the dye. The equilibrium constant for hypericin binding has been determined as Ka=1.40±0.07µM(-1), equivalent to a dissociation constant, Kd=0.71±0.03µM. The complex is active against Staphylococcus aureus bacteria. Overall, the results are encouraging for pursuing the potential application of the complex between hypericin and β-LG as a nanodevice with bactericidal properties for disinfection.


PLOS ONE | 2017

Unveiling a Novel Transient Druggable Pocket in BACE-1 through Molecular Simulations: Conformational Analysis and Binding Mode of Multisite Inhibitors

Ornella Di Pietro; Jordi Juárez-Jiménez; Diego Muñoz-Torrero; Charles A. Laughton; F. Javier Luque

The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer’s disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challenging. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments—huprine and rhein—that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8–14, 154–169 and 307–318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable “floppy” pocket would enable the binding of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligomethylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications introduced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors.


Bioorganic & Medicinal Chemistry | 2016

Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors

Ornella Di Pietro; Nelson Alencar; Gerard Esteban; Elisabet Viayna; Natalia Szałaj; Javier Vázquez; Jordi Juárez-Jiménez; Irene Sola; Belén Pérez; Montse Solé; Mercedes Unzeta; Diego Muñoz-Torrero; F. Javier Luque

Different azides and alkynes have been coupled via Cu-catalyzed 1,3-dipolar Huisgen cycloaddition to afford a novel family of N1- and C5-substituted 1,2,3-triazole derivatives that feature the propargylamine group typical of irreversible MAO-B inhibitors at the C4-side chain of the triazole ring. All the synthesized compounds were evaluated against human MAO-A and MAO-B. Structure-activity relationships and molecular modeling were utilized to gain insight into the structural and chemical features that enhance the binding affinity and selectivity between the two enzyme isoforms. Several lead compounds, in terms of potency (submicromolar to low micromolar range), MAO-B selective recognition, and brain permeability, were identified. One of these leads (MAO-B IC50 of 3.54μM, selectivity MAO-A/MAO-B index of 27.7) was further subjected to reversibility and time-dependence inhibition studies, which disclosed a slow and irreversible inhibition of human MAO-B. Overall, the results support the suitability of the 4-triazolylalkyl propargylamine scaffold for exploring the design of multipotent anti-Alzheimer compounds endowed with irreversible MAO-B inhibitory activity.

Collaboration


Dive into the Jordi Juárez-Jiménez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belén Pérez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Irene Sola

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Victòria Clos

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lieve Naesens

Rega Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge