Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Fallmann is active.

Publication


Featured researches published by Jörg Fallmann.


Nucleic Acids Research | 2011

AREsite: a database for the comprehensive investigation of AU-rich elements.

Andreas Gruber; Jörg Fallmann; Franz Kratochvill; Pavel Kovarik; Ivo L. Hofacker

AREsite is an online resource for the detailed investigation of AU-rich elements (ARE) in vertebrate mRNA 3′-untranslated regions (UTRs). AREs are one of the most prominent cis-acting regulatory elements found in 3′-UTRs of mRNAs. Various ARE-binding proteins that possess RNA stabilizing or destabilizing functions are recruited by sequence-specific motifs. Recent findings suggest an essential role of the structural mRNA context in which these sequence motifs are embedded. AREsite is the first database that allows to quantify the structuredness of ARE motif sites in terms of opening energies and accessibility probabilities. Moreover, we also provide a detailed phylogenetic analysis of ARE motifs and incorporate information about experimentally validated targets of the ARE-binding proteins TTP, HuR and Auf1. The database is publicly available at: http://rna.tbi.univie.ac.at/AREsite.


Nucleic Acids Research | 2016

AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements

Jörg Fallmann; Vitaly Sedlyarov; Andrea Tanzer; Pavel Kovarik; Ivo L. Hofacker

AREsite2 represents an update for AREsite, an on-line resource for the investigation of AU-rich elements (ARE) in human and mouse mRNA 3′UTR sequences. The new updated and enhanced version allows detailed investigation of AU, GU and U-rich elements (ARE, GRE, URE) in the transcriptome of Homo sapiens, Mus musculus, Danio rerio, Caenorhabditis elegans and Drosophila melanogaster. It contains information on genomic location, genic context, RNA secondary structure context and conservation of annotated motifs. Improvements include annotation of motifs not only in 3′UTRs but in the whole gene body including introns, additional genomes, and locally stable secondary structures from genome wide scans. Furthermore, we include data from CLIP-Seq experiments in order to highlight motifs with validated protein interaction. Additionally, we provide a REST interface for experienced users to interact with the database in a semi-automated manner. The database is publicly available at: http://rna.tbi.univie.ac.at/AREsite


Molecular Systems Biology | 2016

Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution

Vitaly Sedlyarov; Jörg Fallmann; Florian Ebner; Jakob Huemer; Lucy Sneezum; Masa Ivin; Kristina Kreiner; Andrea Tanzer; Claus Vogl; Ivo L. Hofacker; Pavel Kovarik

Precise regulation of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. However, a global model integrating regulation and functional consequences of inflammation‐associated mRNA decay remains to be established. Using time‐resolved high‐resolution RNA binding analysis of the mRNA‐destabilizing protein tristetraprolin (TTP), an inflammation‐limiting factor, we qualitatively and quantitatively characterize TTP binding positions in the transcriptome of immunostimulated macrophages. We identify pervasive destabilizing and non‐destabilizing TTP binding, including a robust intronic binding, showing that TTP binding is not sufficient for mRNA destabilization. A low degree of flanking RNA structuredness distinguishes occupied from silent binding motifs. By functionally relating TTP binding sites to mRNA stability and levels, we identify a TTP‐controlled switch for the transition from inflammatory into the resolution phase of the macrophage immune response. Mapping of binding positions of the mRNA‐stabilizing protein HuR reveals little target and functional overlap with TTP, implying a limited co‐regulation of inflammatory mRNA decay by these proteins. Our study establishes a functionally annotated and navigable transcriptome‐wide atlas (http://ttp-atlas.univie.ac.at) of cis‐acting elements controlling mRNA decay in inflammation.


F1000Research | 2015

ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines

Michael T. Wolfinger; Jörg Fallmann; Florian Eggenhofer; Fabian Amman

Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools.


Scientific Reports | 2016

Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

Martin Hölzer; Verena Krähling; Fabian Amman; Emanuel Barth; Stephan H. Bernhart; Victor A. O. Carmelo; Maximilian Collatz; Florian Eggenhofer; Jan Ewald; Jörg Fallmann; Lasse Feldhahn; Markus Fricke; Juliane Gebauer; Andreas J. Gruber; Franziska Hufsky; Henrike Indrischek; Sabina Kanton; Jörg Linde; Nelly Mostajo; Roman Ochsenreiter; Konstantin Riege; Lorena Rivarola-Duarte; Abdullah H. Sahyoun; Sita J. Saunders; Stefan E. Seemann; Andrea Tanzer; Bertram Vogel; Stefanie Wehner; Michael T. Wolfinger; Rolf Backofen

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Nucleic Acids Research | 2017

The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy

Björn Grüning; Jörg Fallmann; Dilmurat Yusuf; Sebastian Will; Anika Erxleben; Florian Eggenhofer; Torsten Houwaart; Bérénice Batut; Pavankumar Videm; Andrea Bagnacani; Markus Wolfien; Steffen C. Lott; Youri Hoogstrate; Wolfgang R. Hess; Olaf Wolkenhauer; Steve Hoffmann; Altuna Akalin; Uwe Ohler; Peter F. Stadler; Rolf Backofen

Abstract RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis. Availability: The RNA workbench is available at https://github.com/bgruening/galaxy-rna-workbench.


Journal of Biotechnology | 2017

RNA-bioinformatics: tools, services and databases for the analysis of RNA-based regulation

Rolf Backofen; Jan Engelhardt; Anika Erxleben; Jörg Fallmann; Björn Grüning; Uwe Ohler; Nikolaus Rajewsky; Peter F. Stadler

The importance of RNA-based regulation is becoming more and more evident. Genome-wide sequencing efforts have shown that the majority of the DNA in eukaryotic genomes is transcribed. Advanced high-throughput techniques like CLIP for the genome-wide detection of RNA-protein interactions have shown that post-transcriptional regulation by RNA-binding proteins matches the complexity of transcriptional regulation. The need for a specialized and integrated analysis of RNA-based data has led to the foundation of the RNA Bioinformatics Center (RBC) within the German Network of Bioinformatics Infrastructure (de.NBI). This paper describes the tools, services and databases provided by the RBC, and shows example applications. Furthermore, we have setup an RNA workbench within the Galaxy framework. For an easy dissemination, we offer a virtualized version of Galaxy (via Galaxy Docker) enabling other groups to use our RNA workbench in a very simple way.


Journal of Biotechnology | 2017

Recent advances in RNA folding

Jörg Fallmann; Sebastian Will; Jan Engelhardt; Björn Grüning; Rolf Backofen; Peter F. Stadler

In the realm of nucleic acid structures, secondary structure forms a conceptually important intermediate level of description and explains the dominating part of the free energy of structure formation. Secondary structures are well conserved over evolutionary time-scales and for many classes of RNAs evolve slower than the underlying primary sequences. Given the close link between structure and function, secondary structure is routinely used as a basis to explain experimental findings. Recent technological advances, finally, have made it possible to assay secondary structure directly using high throughput methods. From a computational biology point of view, secondary structures have a special role because they can be computed efficiently using exact dynamic programming algorithms. In this contribution we provide a short overview of RNA folding algorithms, recent additions and variations and address methods to align, compare, and cluster RNA structures, followed by a tabular summary of the most important software suites in the fields.


Scientific Reports | 2017

Corrigendum: Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

Martin Hölzer; Verena Krähling; Fabian Amman; Emanuel Barth; Stephan H. Bernhart; Victor A. O. Carmelo; Maximilian Collatz; Florian Eggenhofer; Jan Ewald; Jörg Fallmann; Lasse Feldhahn; Markus Fricke; Juliane Gebauer; Andreas J. Gruber; Franziska Hufsky; Henrike Indrischek; Sabina Kanton; Jörg Linde; Nelly Mostajo; Roman Ochsenreiter; Konstantin Riege; Lorena Rivarola-Duarte; Abdullah H. Sahyoun; Sita J. Saunders; Stefan E. Seemann; Andrea Tanzer; Bertram Vogel; Stefanie Wehner; Michael T. Wolfinger; Rolf Backofen

Scientific Reports 6: Article number: 34589; published online: 07 October 2016; updated: 11 January 2017 In this Article, Ivo Grosse is incorrectly affiliated to “Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany”. The correct affiliations for Ivo Grosse are listed below:


Genome Research | 2018

In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors

Fx Reymond Sutandy; Stefanie Ebersberger; Lu Huang; Anke Busch; Maximilian Bach; Hyun-Seo Kang; Jörg Fallmann; Daniel Maticzka; Rolf Backofen; Peter F. Stadler; Kathi Zarnack; Michael Sattler; Stefan Legewie; Julian König

Collaboration


Dive into the Jörg Fallmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Kovarik

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge