Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivo L. Hofacker is active.

Publication


Featured researches published by Ivo L. Hofacker.


Monatshefte Fur Chemie | 1994

Fast folding and comparison of RNA secondary structures

Ivo L. Hofacker; Walter Fontana; Peter F. Stadler; L. S. Bonhoeffer; Manfred Tacker; Peter Schuster

SummaryComputer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions and base pairing probabilities.An efficient heuristic for the inverse folding problem of RNA is introduced. In addition we present compact and efficient programs for the comparison of RNA secondary structures based on tree editing and alignment.All computer codes are written in ANSI C. They include implementations of modified algorithms on parallel computers with distributed memory. Performance analysis carried out on an Intel Hypercube shows that parallel computing becomes gradually more and more efficient the longer the sequences are.ZusammenfassungDie im Vienna RNA package enthaltenen Computer Programme für die Berechnung und den Vergleich von RNA Sekundärstrukturen werden präsentiert. Ihren Kern bilden Algorithmen zur Vorhersage von Strukturen minimaler Energie sowie zur Berechnung von Zustandssumme und Basenpaarungswahrscheinlichkeiten mittels dynamischer Programmierung.Ein effizienter heuristischer Algorithmus für das inverse Faltungsproblem wird vorgestellt. Darüberhinaus präsentieren wir kompakte und effiziente Programme zum Vergleich von RNA Sekundärstrukturen durch Baum-Editierung und Alignierung.Alle Programme sind in ANSI C geschrieben, darunter auch eine Implementation des Faltungs-algorithmus für Parallelrechner mit verteiltem Speicher. Wie Tests auf einem Intel Hypercube zeigen, wird das Parallelrechnen umso effizienter je länger die Sequenzen sind.


Nucleic Acids Research | 2003

Vienna RNA secondary structure server

Ivo L. Hofacker

The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.


Science | 2007

RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription

Philipp Kapranov; Jill Cheng; Sujit Dike; David A. Nix; Radharani Duttagupta; Aarron T. Willingham; Peter F. Stadler; Jana Hertel; Jörg Hackermüller; Ivo L. Hofacker; Ian Bell; Evelyn Cheung; Jorg Drenkow; Erica Dumais; Sandeep Patel; Gregg A. Helt; Madhavan Ganesh; Srinka Ghosh; Antonio Piccolboni; Victor Sementchenko; Hari Tammana; Thomas R. Gingeras

Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.


Algorithms for Molecular Biology | 2011

ViennaRNA Package 2.0

Ronny Lorenz; Stephan H. Bernhart; Christian Höner zu Siederdissen; Hakim Tafer; Christoph Flamm; Peter F. Stadler; Ivo L. Hofacker

BackgroundSecondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties.ResultsThe ViennaRNA Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the Turner 2004 parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying RNAlib and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as centroid structures and maximum expected accuracy structures derived from base pairing probabilities, or z-scores for locally stable secondary structures, and support for input in fasta format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions.ConclusionsThe ViennaRNA Package 2.0, supporting concurrent computations via OpenMP, can be downloaded from http://www.tbi.univie.ac.at/RNA.


Nucleic Acids Research | 2008

The Vienna RNA Websuite

Andreas Gruber; Ronny Lorenz; Stephan H. Bernhart; Richard Neuböck; Ivo L. Hofacker

The Vienna RNA Websuite is a comprehensive collection of tools for folding, design and analysis of RNA sequences. It provides a web interface to the most commonly used programs of the Vienna RNA package. Among them, we find folding of single and aligned sequences, prediction of RNA–RNA interactions, and design of sequences with a given structure. Additionally, we provide analysis of folding landscapes using the barriers program and structural RNA alignments using LocARNA. The web server together with software packages for download is freely accessible at http://rna.tbi.univie.ac.at/.


Proceedings of the Royal Society of London B: Biological Sciences | 1994

From sequences to shapes and back: a case study in RNA secondary structures

Peter Schuster; Walter Fontana; Peter F. Stadler; Ivo L. Hofacker

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones. By using an algorithm for inverse folding, we show that sequences sharing the same structure are distributed randomly over sequence space. All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the chain length. The sequence space is percolated by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications for evolutionary adaptation and for applied molecular evolution are evident: finding a particular structure by mutation and selection is much simpler than expected and, even if catalytic activity should turn out to be sparse in the space of RNA structures, it can hardly be missed by evolutionary processes.


Journal of Molecular Biology | 2002

Secondary structure prediction for aligned RNA sequences.

Ivo L. Hofacker; Martin Fekete; Peter F. Stadler

Most functional RNA molecules have characteristic secondary structures that are highly conserved in evolution. Here we present a method for computing the consensus structure of a set aligned RNA sequences taking into account both thermodynamic stability and sequence covariation. Comparison with phylogenetic structures of rRNAs shows that a reliability of prediction of more than 80% is achieved for only five related sequences. As an application we show that the Early Noduline mRNA contains significant secondary structure that is supported by sequence covariation.


Biopolymers | 1999

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures

Stefan Wuchty; Walter Fontana; Ivo L. Hofacker; Peter Schuster

An algorithm is presented for generating rigorously all suboptimal secondary structures between the minimum free energy and an arbitrary upper limit. The algorithm is particularly fast in the vicinity of the minimum free energy. This enables the efficient approximation of statistical quantities, such as the partition function or measures for structural diversity. The density of states at low energies and its associated structures are crucial in assessing from a thermodynamic point of view how well-defined the ground state is. We demonstrate this by exploring the role of base modification in tRNA secondary structures, both at the level of individual sequences from Escherichia coli and by comparing artificially generated ensembles of modified and unmodified sequences with the same tRNA structure. The two major conclusions are that (1) base modification considerably sharpens the definition of the ground state structure by constraining energetically adjacent structures to be similar to the ground state, and (2) sequences whose ground state structure is thermodynamically well defined show a significant tendency to buffer single point mutations. This can have evolutionary implications, since selection pressure to improve the definition of ground states with biological function may result in increased neutrality.


PLOS Computational Biology | 2005

Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering

Sebastian Will; Kristin Reiche; Ivo L. Hofacker; Peter F. Stadler; Rolf Backofen

The RFAM database defines families of ncRNAs by means of sequence similarities that are sufficient to establish homology. In some cases, such as microRNAs and box H/ACA snoRNAs, functional commonalities define classes of RNAs that are characterized by structural similarities, and typically consist of multiple RNA families. Recent advances in high-throughput transcriptomics and comparative genomics have produced very large sets of putative noncoding RNAs and regulatory RNA signals. For many of them, evidence for stabilizing selection acting on their secondary structures has been derived, and at least approximate models of their structures have been computed. The overwhelming majority of these hypothetical RNAs cannot be assigned to established families or classes. We present here a structure-based clustering approach that is capable of extracting putative RNA classes from genome-wide surveys for structured RNAs. The LocARNA (local alignment of RNA) tool implements a novel variant of the Sankoff algorithm that is sufficiently fast to deal with several thousand candidate sequences. The method is also robust against false positive predictions, i.e., a contamination of the input data with unstructured or nonconserved sequences. We have successfully tested the LocARNA-based clustering approach on the sequences of the RFAM-seed alignments. Furthermore, we have applied it to a previously published set of 3,332 predicted structured elements in the Ciona intestinalis genome (Missal K, Rose D, Stadler PF (2005) Noncoding RNAs in Ciona intestinalis. Bioinformatics 21 (Supplement 2): i77–i78). In addition to recovering, e.g., tRNAs as a structure-based class, the method identifies several RNA families, including microRNA and snoRNA candidates, and suggests several novel classes of ncRNAs for which to date no representative has been experimentally characterized.


Nature Biotechnology | 2005

Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.

Stefan Washietl; Ivo L. Hofacker; Melanie Lukasser; Alexander Hüttenhofer; Peter F. Stadler

In contrast to the fairly reliable and complete annotation of the protein coding genes in the human genome, comparable information is lacking for noncoding RNAs (ncRNAs). We present a comparative screen of vertebrate genomes for structural noncoding RNAs, which evaluates conserved genomic DNA sequences for signatures of structural conservation of base-pairing patterns and exceptional thermodynamic stability. We predict more than 30,000 structured RNA elements in the human genome, almost 1,000 of which are conserved across all vertebrates. Roughly a third are found in introns of known genes, a sixth are potential regulatory elements in untranslated regions of protein-coding mRNAs and about half are located far away from any known gene. Only a small fraction of these sequences has been described previously. A comparison with recent tiling array data shows that more than 40% of the predicted structured RNAs overlap with experimentally detected sites of transcription. The widespread conservation of secondary structure points to a large number of functional ncRNAs and cis-acting mRNA structures in the human genome.

Collaboration


Dive into the Ivo L. Hofacker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge