Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Hagmann is active.

Publication


Featured researches published by Jörg Hagmann.


Nature | 2011

Spontaneous epigenetic variation in the Arabidopsis thaliana methylome

Claude Becker; Jörg Hagmann; Jonas Müller; Daniel Koenig; Oliver Stegle; Karsten M. Borgwardt; Detlef Weigel

Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles, and these can influence the expression of nearby genes. However, to understand their role in evolution, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.


Genome Biology | 2009

Simultaneous alignment of short reads against multiple genomes.

Korbinian Schneeberger; Jörg Hagmann; Stephan Ossowski; Norman Warthmann; Sandra Gesing; Oliver Kohlbacher; Detlef Weigel

Genome resequencing with short reads generally relies on alignments against a single reference. GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes (e.g., individuals of the same species) into a single graph structure. It constitutes the first approach for handling multiple references and introduces representations for alignments against complex structures. Demonstrated benefits include access to polymorphisms that cannot be identified by alignments against the reference alone. Download GenomeMapper at http://1001genomes.org.


Cell | 2012

Fast-Forward Genetics Identifies Plant CPL Phosphatases as Regulators of miRNA Processing Factor HYL1

Pablo A. Manavella; Jörg Hagmann; Felix Ott; Sascha Laubinger; Mirita Franz; Boris Macek; Detlef Weigel

MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.


Journal of Cellular Biochemistry | 1999

Regulation of plasma membrane blebbing by the cytoskeleton.

Jörg Hagmann; Max M. Burger; Daniel Dagan

When neuroblastoma cells are exposed to lysophosphatidic acid (LPA), they undergo a vigorous, but transient blebbing phase. The effect is sensitive to inhibition by staurosporine, KT 5926 (an inhibitor of myosin light chain kinase), and cytochalasin B, suggesting that LPA activates the phosphorylation of myosin light chain and increases the contractile activity of the actomyosin network. Cell contractions increase the intracellular pressure driving bleb formation. Calyculin, an inhibitor of protein phosphatase2A, also causes blebbing which continues as long as the drug is present, presumably by keeping myosin light chain in the phosphorylated state. Blebbing of neuroblastoma cells is regulated by the status of all three cytoskeletal systems: disassembly of microtubules by nocodazole and of intermediate filaments by acrylamide increased the number of blebbing cells. Cytochalasin B, on the other hand, prevents bleb retraction and, after prolonged incubation, bleb formation. These results are discussed in terms of a model viewing the cytoskeleton as an integrated network transmitting force throughout the cell. Bleb retraction was studied by transfecting neuroblastoma cells with a vector containing the gene for γ‐cytoplasmic actin fused to the green fluorescent protein EGFP (EGFP‐actin). EGFP‐actin was not detected on the membranes of extending blebs, but started accumulating along the cytoplasmic surface of blebs as soon as the extension phase came to an end and retraction set in. These results confirm earlier suggestions that actin polymerization is required for bleb retraction and for the first time directly relate the two events. J. Cell. Biochem. 73:488–499, 1999.


PLOS Genetics | 2014

Evolution of DNA Methylation Patterns in the Brassicaceae is Driven by Differences in Genome Organization

Danelle K. Seymour; Daniel Koenig; Jörg Hagmann; Claude Becker; Detlef Weigel

DNA methylation is an ancient molecular modification found in most eukaryotes. In plants, DNA methylation is not only critical for transcriptionally silencing transposons, but can also affect phenotype by altering expression of protein coding genes. The extent of its contribution to phenotypic diversity over evolutionary time is, however, unclear, because of limited stability of epialleles that are not linked to DNA mutations. To dissect the relative contribution of DNA methylation to transposon surveillance and host gene regulation, we leveraged information from three species in the Brassicaceae that vary in genome architecture, Capsella rubella, Arabidopsis lyrata, and Arabidopsis thaliana. We found that the lineage-specific expansion and contraction of transposon and repeat sequences is the main driver of interspecific differences in DNA methylation. The most heavily methylated portions of the genome are thus not conserved at the sequence level. Outside of repeat-associated methylation, there is a surprising degree of conservation in methylation at single nucleotides located in gene bodies. Finally, dynamic DNA methylation is affected more by tissue type than by environmental differences in all species, but these responses are not conserved. The majority of DNA methylation variation between species resides in hypervariable genomic regions, and thus, in the context of macroevolution, is of limited phenotypic consequence.


PLOS Genetics | 2015

Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage

Jörg Hagmann; Claude Becker; Jonas Müller; Oliver Stegle; Rhonda C. Meyer; George Wang; Korbinian Schneeberger; Joffrey Fitz; Thomas Altmann; Joy Bergelson; Karsten M. Borgwardt; Detlef Weigel

There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence.


eLife | 2016

Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity

Anjar Wibowo; Claude Becker; Gianpiero Marconi; Julius Durr; Jonathan Price; Jörg Hagmann; Ranjith Papareddy; Hadi Putra; Jorge Kageyama; Jörg D. Becker; Detlef Weigel; José F. Gutierrez-Marcos

Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal ‘short-term stress memory’ with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.


Nature plants | 2015

Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation

Eva Maria Willing; Vimal Rawat; Terezie Mandáková; Florian Maumus; Geo Velikkakam James; Karl Nordström; Claude Becker; Norman Warthmann; Claudia Chica; Bogna Szarzynska; Matthias Zytnicki; Maria C. Albani; Christiane Kiefer; Sara Bergonzi; Loren Castaings; Julieta L. Mateos; Markus C. Berns; Nora Bujdoso; Thomas Piofczyk; Laura de Lorenzo; Cristina Barrero-Sicilia; Isabel Mateos; Mathieu Piednoël; Jörg Hagmann; Romy Chen-Min-Tao; Raquel Iglesias-Fernández; Stephan C. Schuster; Carlos Alonso-Blanco; François Roudier; Pilar Carbonero

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.


Plant Physiology | 2015

FYVE1 Is Essential for Vacuole Biogenesis and Intracellular Trafficking in Arabidopsis

Cornelia Kolb; Marie-Kristin Nagel; Kamila Kalinowska; Jörg Hagmann; Mie Ichikawa; Franziska Anzenberger; Angela Alkofer; Masa H. Sato; Pascal Braun; Erika Isono

A phospholipid-binding protein regulates intracellular trafficking and vacuole formation. The plant vacuole is a central organelle that is involved in various biological processes throughout the plant life cycle. Elucidating the mechanism of vacuole biogenesis and maintenance is thus the basis for our understanding of these processes. Proper formation of the vacuole has been shown to depend on the intracellular membrane trafficking pathway. Although several mutants with altered vacuole morphology have been characterized in the past, the molecular basis for plant vacuole biogenesis has yet to be fully elucidated. With the aim to identify key factors that are essential for vacuole biogenesis, we performed a forward genetics screen in Arabidopsis (Arabidopsis thaliana) and isolated mutants with altered vacuole morphology. The vacuolar fusion defective1 (vfd1) mutant shows seedling lethality and defects in central vacuole formation. VFD1 encodes a Fab1, YOTB, Vac1, and EEA1 (FYVE) domain-containing protein, FYVE1, that has been implicated in intracellular trafficking. FYVE1 localizes on late endosomes and interacts with Src homology-3 domain-containing proteins. Mutants of FYVE1 are defective in ubiquitin-mediated protein degradation, vacuolar transport, and autophagy. Altogether, our results show that FYVE1 is essential for plant growth and development and place FYVE1 as a key regulator of intracellular trafficking and vacuole biogenesis.


PLOS Genetics | 2015

Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M

Ulrich Lutz; David Posé; Matthias Pfeifer; Heidrun Gundlach; Jörg Hagmann; Congmao Wang; Detlef Weigel; Klaus F. X. Mayer; Markus Schmid; Claus Schwechheimer

Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.

Collaboration


Dive into the Jörg Hagmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max M. Burger

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Oliver Stegle

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge