Jörg Kahnt
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg Kahnt.
Environmental Microbiology | 2008
Katharina F. Ettwig; Seigo Shima; Katinka van de Pas-Schoonen; Jörg Kahnt; Marnix H. Medema; Huub J. M. Op den Camp; Mike S. M. Jetten; Marc Strous
Recently, a microbial consortium was shown to couple the anaerobic oxidation of methane to denitrification, predominantly in the form of nitrite reduction to dinitrogen gas. This consortium was dominated by bacteria of an as yet uncharacterized division and archaea of the order Methanosarcinales. The present manuscript reports on the upscaling of the enrichment culture, and addresses the role of the archaea in methane oxidation. The key gene of methanotrophic and methanogenic archaea, mcrA, was sequenced. The associated cofactor F(430) was shown to have a mass of 905 Da, the same as for methanogens and different from the heavier form (951 Da) found in methanotrophic archaea. After prolonged enrichment (> 1 year), no inhibition of anaerobic methane oxidation was observed in the presence of 20 mM bromoethane sulfonate, a specific inhibitor of MCR. Optimization of the cultivation conditions led to higher rates of methane oxidation and to the decline of the archaeal population, as shown by fluorescence in situ hybridization and quantitative MALDI-TOF analysis of F(430). Mass balancing showed that methane oxidation was still coupled to nitrite reduction in the total absence of oxygen. Together, our results show that bacteria can couple the anaerobic oxidation of methane to denitrification without the involvement of Archaea.
Nature | 2003
Martin Krüger; Anke Meyerdierks; Frank Oliver Glöckner; Rudolf Amann; Friedrich Widdel; Michael Kube; Richard Reinhardt; Jörg Kahnt; Reinhard Böcher; Rudolf K. Thauer; Seigo Shima
Anaerobic oxidation of methane (AOM) in marine sediments is an important microbial process in the global carbon cycle and in control of greenhouse gas emission. The responsible organisms supposedly reverse the reactions of methanogenesis, but cultures providing biochemical proof of this have not been isolated. Here we searched for AOM-associated cell components in microbial mats from anoxic methane seeps in the Black Sea. These mats catalyse AOM rather than carry out methanogenesis. We extracted a prominent nickel compound displaying the same absorption spectrum as the nickel cofactor F430 of methyl-coenzyme M reductase, the terminal enzyme of methanogenesis; however, the nickel compound exhibited a higher molecular mass than F430. The apparent variant of F430 was part of an abundant protein that was purified from the mat and that consists of three different subunits. Determined amino-terminal amino acid sequences matched a gene locus cloned from the mat. Sequence analyses revealed similarities to methyl-coenzyme M reductase from methanogenic archaea. The abundance of the nickel protein (7% of extracted proteins) in the mat suggests an important role in AOM.
Nature | 2011
Armin Djamei; Kerstin Schipper; Franziska Rabe; Anupama Ghosh; Volker Vincon; Jörg Kahnt; Sonia Osorio; Takayuki Tohge; Alisdair R. Fernie; Ivo Feussner; Kirstin Feussner; Peter Meinicke; York-Dieter Stierhof; Heinz Schwarz; Boris Macek; Matthias Mann; Regine Kahmann
Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.
The EMBO Journal | 2004
Olga Dolnik; Valentina A. Volchkova; Wolfgang Garten; Caroline Carbonnelle; Stephan Becker; Jörg Kahnt; Ute Ströher; Hans-Dieter Klenk; Viktor Volchkov
In this study, release of abundant amounts of the Ebola virus (EBOV) surface glycoprotein GP in a soluble form from virus‐infected cells was investigated. We demonstrate that the mechanism responsible for the release of GP is ectodomain shedding mediated by cellular sheddases. Proteolytic cleavage taking place at amino‐acid position D637 removes the transmembrane anchor and liberates complexes consisting of GP1 and truncated GP2 (GP2Δ) subunits from the cell surface. We show that tumor necrosis factor α‐converting enzyme (TACE), a member of the ADAM family of zinc‐dependent metalloproteases, is involved in EBOV GP shedding. This finding shows for the first time that virus‐encoded surface glycoproteins are substrates for ADAMs. Furthermore, we provide evidence that shed GP is present in significant amounts in the blood of virus‐infected animals and that it may play an important role in the pathogenesis of infection by efficiently blocking the activity of virus‐neutralizing antibodies.
Nature | 2012
Seigo Shima; Martin Krueger; Tobias Weinert; Ulrike Demmer; Jörg Kahnt; Rudolf K. Thauer; Ulrich Ermler
The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate. Crystals grown from the heterogeneous sample diffract to 2.1 Å resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F430 modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts.
eLife | 2014
Shigeyuki Tanaka; Thomas Brefort; Nina Neidig; Armin Djamei; Jörg Kahnt; Wilfred Vermerris; Stefanie Koenig; Kirstin Feussner; Ivo Feussner; Regine Kahmann
The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin–proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001
The EMBO Journal | 2010
Juliane Kühn; Ariane Briegel; Erhard Mörschel; Jörg Kahnt; Katja Leser; Stephanie Wick; Grant J. Jensen; Martin Thanbichler
The cytoskeleton has a key function in the temporal and spatial organization of both prokaryotic and eukaryotic cells. Here, we report the identification of a new class of polymer‐forming proteins, termed bactofilins, that are widely conserved among bacteria. In Caulobacter crescentus, two bactofilin paralogues cooperate to form a sheet‐like structure lining the cytoplasmic membrane in proximity of the stalked cell pole. These assemblies mediate polar localization of a peptidoglycan synthase involved in stalk morphogenesis, thus complementing the function of the actin‐like cytoskeleton and the cell division machinery in the regulation of cell wall biogenesis. In other bacteria, bactofilins can establish rod‐shaped filaments or associate with the cell division apparatus, indicating considerable structural and functional flexibility. Bactofilins polymerize spontaneously in the absence of additional cofactors in vitro, forming stable ribbon‐ or rod‐like filament bundles. Our results suggest that these structures have evolved as an alternative to intermediate filaments, serving as versatile molecular scaffolds in a variety of cellular pathways.
Journal of Biological Chemistry | 2000
Thorsten Selmer; Jörg Kahnt; Marcel Goubeaud; Seigo Shima; Wolfgang Grabarse; Ulrich Ermler; Rudolf K. Thauer
The global production of the greenhouse gas methane by methanogenic archaea reaches 1 billion tons per annum. The final reaction releasing methane is catalyzed by the enzyme methyl-coenzyme M reductase. The crystal structure of methyl-coenzyme M reductase from Methanobacterium thermoautotrophicumrevealed the presence of five modified amino acids within the α-subunit and near the active site region. Four of these modifications were C-, N-, and S-methylations, two of which, 2-(S)-methylglutamine and 5-(S)-methylarginine, have never been encountered before. We have now confirmed these modifications by mass spectrometry of chymotryptic peptides. With methyl-coenzyme M reductase purified from cells grown in the presence of l-[methyl-D3]methionine, it was shown that the methyl groups of the modified amino acids are derived from the methyl group of methionine rather than from methyl-coenzyme M, an intermediate in methane formation. The D3 labeling pattern was found to be qualitatively and quantitatively the same as in the two methyl groups of the methanogenic coenzyme F430, which are known to be introduced viaS-adenosylmethionine. From the results, it is concluded that the methyl groups of the modified amino acids in methyl-coenzyme M reductase are biosynthetically introduced by anS-adenosylmethionine-dependent post-translational modification. A mechanism for the methylation of glutamine at C-2 and of arginine at C-5 is discussed.
Molecular Microbiology | 2013
Anke Treuner-Lange; Kryssia Aguiluz; Chris van der Does; Nuria Gómez-Santos; Andrea Harms; Dominik Schumacher; Peter Lenz; Michael Hoppert; Jörg Kahnt; José Muñoz-Dorado; Lotte Søgaard-Andersen
Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z‐ring at the division site. Here, we show that lack of the ParA‐like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome‐free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z‐rings and incorrect positioning of the few Z‐rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z‐ring formation and is a spatial regulator of Z‐ring formation and cell division. The cell cycle‐dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z‐ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z‐ring formation to this position.
Cell | 2012
Susan Schlimpert; Eric A. Klein; Ariane Briegel; Velocity Hughes; Jörg Kahnt; Kathrin Bolte; Uwe G. Maier; Yves V. Brun; Grant J. Jensen; Zemer Gitai; Martin Thanbichler
In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are also widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell-cycle-dependent manner. Their presence is critical for cellular fitness because they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins.