Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seigo Shima is active.

Publication


Featured researches published by Seigo Shima.


Science | 2008

The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.

Seigo Shima; Oliver Pilak; Sonja Vogt; Michael Schick; Marco Salomone Stagni; Wolfram Meyer-Klaucke; Eberhard Warkentin; Rudolf K. Thauer; Ulrich Ermler

Biological formation and consumption of molecular hydrogen (H2) are catalyzed by hydrogenases, of which three phylogenetically unrelated types are known: [NiFe]-hydrogenases, [FeFe]-hydrogenases, and [Fe]-hydrogenase. We present a crystal structure of [Fe]-hydrogenase at 1.75 angstrom resolution, showing a mononuclear iron coordinated by the sulfur of cysteine 176, two carbon monoxide (CO) molecules, and the sp2-hybridized nitrogen of a 2-pyridinol compound with back-bonding properties similar to those of cyanide. The three-dimensional arrangement of the ligands is similar to that of thiolate, CO, and cyanide ligated to the low-spin iron in binuclear [NiFe]- and [FeFe]-hydrogenases, although the enzymes have evolved independently and the CO and cyanide ligands are not found in any other metalloenzyme. The related iron ligation pattern of hydrogenases exemplifies convergent evolution and presumably plays an essential role in H2 activation. This finding may stimulate the ongoing synthesis of catalysts that could substitute for platinum in applications such as fuel cells.


Environmental Microbiology | 2008

Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea

Katharina F. Ettwig; Seigo Shima; Katinka van de Pas-Schoonen; Jörg Kahnt; Marnix H. Medema; Huub J. M. Op den Camp; Mike S. M. Jetten; Marc Strous

Recently, a microbial consortium was shown to couple the anaerobic oxidation of methane to denitrification, predominantly in the form of nitrite reduction to dinitrogen gas. This consortium was dominated by bacteria of an as yet uncharacterized division and archaea of the order Methanosarcinales. The present manuscript reports on the upscaling of the enrichment culture, and addresses the role of the archaea in methane oxidation. The key gene of methanotrophic and methanogenic archaea, mcrA, was sequenced. The associated cofactor F(430) was shown to have a mass of 905 Da, the same as for methanogens and different from the heavier form (951 Da) found in methanotrophic archaea. After prolonged enrichment (> 1 year), no inhibition of anaerobic methane oxidation was observed in the presence of 20 mM bromoethane sulfonate, a specific inhibitor of MCR. Optimization of the cultivation conditions led to higher rates of methane oxidation and to the decline of the archaeal population, as shown by fluorescence in situ hybridization and quantitative MALDI-TOF analysis of F(430). Mass balancing showed that methane oxidation was still coupled to nitrite reduction in the total absence of oxygen. Together, our results show that bacteria can couple the anaerobic oxidation of methane to denitrification without the involvement of Archaea.


Nature | 2003

A conspicuous nickel protein in microbial mats that oxidize methane anaerobically

Martin Krüger; Anke Meyerdierks; Frank Oliver Glöckner; Rudolf Amann; Friedrich Widdel; Michael Kube; Richard Reinhardt; Jörg Kahnt; Reinhard Böcher; Rudolf K. Thauer; Seigo Shima

Anaerobic oxidation of methane (AOM) in marine sediments is an important microbial process in the global carbon cycle and in control of greenhouse gas emission. The responsible organisms supposedly reverse the reactions of methanogenesis, but cultures providing biochemical proof of this have not been isolated. Here we searched for AOM-associated cell components in microbial mats from anoxic methane seeps in the Black Sea. These mats catalyse AOM rather than carry out methanogenesis. We extracted a prominent nickel compound displaying the same absorption spectrum as the nickel cofactor F430 of methyl-coenzyme M reductase, the terminal enzyme of methanogenesis; however, the nickel compound exhibited a higher molecular mass than F430. The apparent variant of F430 was part of an abundant protein that was purified from the mat and that consists of three different subunits. Determined amino-terminal amino acid sequences matched a gene locus cloned from the mat. Sequence analyses revealed similarities to methyl-coenzyme M reductase from methanogenic archaea. The abundance of the nickel protein (7% of extracted proteins) in the mat suggests an important role in AOM.


Annual Review of Biochemistry | 2010

Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2 Storage

Rudolf K. Thauer; Anne-Kristin Kaster; Meike Goenrich; Michael Schick; Takeshi Hiromoto; Seigo Shima

Most methanogenic archaea reduce CO(2) with H(2) to CH(4). For the activation of H(2), they use different [NiFe]-hydrogenases, namely energy-converting [NiFe]-hydrogenases, heterodisulfide reductase-associated [NiFe]-hydrogenase or methanophenazine-reducing [NiFe]-hydrogenase, and F(420)-reducing [NiFe]-hydrogenase. The energy-converting [NiFe]-hydrogenases are phylogenetically related to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]-hydrogenase (instead of F(420)-reducing [NiFe]-hydrogenase) and by that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH(2)-, one S-CH(2)-, and a sp(2)-hybridized pyridinol nitrogen. Ligation of the iron is thus similar to that of the low-spin iron in the binuclear active-site metal center of [NiFe]- and [FeFe]-hydrogenases. Putative genes for the synthesis of the FeGP cofactor have been identified. The formation of methane from 4 H(2) and CO(2) catalyzed by methanogenic archaea is being discussed as an efficient means to store H(2).


Annals of the New York Academy of Sciences | 2008

Methane as Fuel for Anaerobic Microorganisms

Rudolf K. Thauer; Seigo Shima

Methane has long been known to be used as a carbon and energy source by some aerobic alpha‐ and delta‐proteobacteria. In these organisms the metabolism of methane starts with its oxidation with O2 to methanol, a reaction catalyzed by a monooxygenase and therefore restricted to the aerobic world. Methane has recently been shown to also fuel the growth of anaerobic microorganisms. The oxidation of methane with sulfate and with nitrate have been reported, but the mechanisms of anaerobic methane oxidation still remains elusive. Sulfate‐dependent methane oxidation is catalyzed by methanotrophic archaea, which are related to the Methanosarcinales and which grow in close association with sulfate‐reducing delta‐proteobacteria. There is evidence that anaerobic methane oxidation with sulfate proceeds at least in part via reversed methanogenesis involving the nickel enzyme methyl‐coenzyme M reductase for methane activation, which under standard conditions is an endergonic reaction, and thus inherently slow. Methane oxidation coupled to denitrification is mediated by bacteria belonging to a novel phylum and does not involve methyl‐coenzyme M reductase. The first step in methane oxidation is most likely the exergonic formation of 2‐methylsuccinate from fumarate and methane catalyzed by a glycine‐radical enzyme.


Current Opinion in Structural Biology | 1998

Active sites of transition-metal enzymes with a focus on nickel

Ulrich Ermler; Wolfgang Grabarse; Seigo Shima; Marcel Goubeaud; Rudolf K. Thauer

Since 1995, crystal structures have been determined for many transition-metal enzymes, in particular those containing the rarely used transition metals vanadium, molybdenum, tungsten, manganese, cobalt and nickel. Accordingly, our understanding of how an enzyme uses the unique properties of a specific transition metal has been substantially increased in the past few years. The different functions of nickel in catalysis are highlighted by describing the active sites of six nickel enzymes - methyl-coenyzme M reductase, urease, hydrogenase, superoxide dismutase, carbon monoxide dehydrogenase and acetyl-coenzyme A synthase.


Journal of Biological Chemistry | 2006

The iron-sulfur-cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif

Malgorzata Korbas; Sonja Vogt; Wolfram Meyer-Klaucke; Eckhard Bill; Erica J. Lyon; Rudolf K. Thauer; Seigo Shima

The iron-sulfur cluster-free hydrogenase (Hmd) from methanogenic archaea harbors an iron-containing cofactor of yet unknown structure. X-ray absorption spectroscopy of the active, as isolated enzyme from Methanothermobacter marburgensis (mHmd) and of the active, reconstituted enzyme from Methanocaldococcus jannaschii (jHmd) revealed the presence of mononuclear iron with two CO, one sulfur and one or two N/O in coordination distance. In jHmd, the single sulfur ligand is most probably provided by Cys176, as deduced from a comparison of the activity and of the x-ray absorption and Mössbauer spectra of the enzyme mutated in any of the three conserved cysteines. In the isolated Hmd cofactor, two CO, one sulfur, and two nitrogen/oxygen atoms coordinate the iron, the sulfur ligand being most probably provided by mercaptoethanol, which is absolutely required for the extraction of the iron-containing cofactor from the holoenzyme and for the stabilization of the extracted cofactor. In active mHmd holoenzyme, the number of iron ligands increased by one when one of the Hmd inhibitors (CO or KCN) were present, indicating that in active Hmd, the iron contains an open coordination site, which is proposed to be the site of H2 interaction.


Nature | 2012

Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.

Seigo Shima; Martin Krueger; Tobias Weinert; Ulrike Demmer; Jörg Kahnt; Rudolf K. Thauer; Ulrich Ermler

The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate. Crystals grown from the heterogeneous sample diffract to 2.1 Å resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F430 modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts.


FEBS Letters | 2000

The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor

Gerrit Buurman; Seigo Shima; Rudolf K. Thauer

The hmd gene, which encodes the metal‐free hydrogenase in methanogenic archaea, was heterologously expressed in Escherichia coli. The overproduced enzyme was completely inactive. High activity could, however, be induced by the addition of ultrafiltrate from active enzyme denatured in 8 M urea. The active fraction in the ultrafiltrate was heat‐labile and migrated on gel filtration columns with an apparent molecular mass well below 1000 Da.


Journal of Bioscience and Bioengineering | 2002

Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen

Seigo Shima; Eberhard Warkentin; Rudolf K. Thauer; Ulrich Ermler

Methane is an end product of anaerobic degradation of organic compounds in fresh water environments such as lake sediments and the intestinal tract of animals. Methanogenic archaea produce methane from carbon dioxide and molecular hydrogen, acetate and C1 compounds such as methanol in an energy gaining process. The methanogenic pathway utilizing carbon dioxide and molecular hydrogen involves ten methanogen specific enzymes, which catalyze unique reactions using novel coenzymes. These enzymes have been purified and biochemically characterized. The genes encoding the enzymes have been cloned and sequenced. Recently, crystal structures of five methanogenic enzymes: formylmethanofuran : tetrahydromethanopterin formyltransferase, methenyltetrahydromethanopterin cyclohydrolase, methylenetetrahydromethanopterin reductase, F420H2:NADP oxidoreductase and methyl-coenzyme M reductase were reported. In this review, we describe the pathway utilizing carbon dioxide and molecular hydrogen and the catalytic mechanisms of the enzymes based on their crystal structures.

Collaboration


Dive into the Seigo Shima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenichi Ataka

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge