Jörg Kruse
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg Kruse.
Journal of Experimental Botany | 2014
Jürgen Kreuzwieser; Ursel Scheerer; Jörg Kruse; Tim Burzlaff; Anne Honsel; Saleh A. Al-Farraj; Plamen Georgiev; Jörg-Peter Schnitzler; Andrea Ghirardo; Ines Kreuzer; Rainer Hedrich; Heinz Rennenberg
Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.
Current Biology | 2013
Sönke Scherzer; Elzbieta Krol; Ines Kreuzer; Jörg Kruse; Franziska Karl; Martin von Rüden; María Escalante-Pérez; Thomas Müller; Heinz Rennenberg; Khaled A. S. Al-Rasheid; Erwin Neher; Rainer Hedrich
BACKGROUND Ammonium transporter (AMT/MEP/Rh) superfamily members mediate ammonium uptake and retrieval. This pivotal transport system is conserved among all living organisms. For plants, nitrogen represents a macronutrient available in the soil as ammonium, nitrate, and organic nitrogen compounds. Plants living on extremely nutrient-poor soils have developed a number of adaptation mechanisms, including a carnivorous lifestyle. This study addresses the molecular nature, function, and regulation of prey-derived ammonium uptake in the Venus flytrap, Dionaea muscipula, one of the fastest active carnivores. RESULTS The Dionaea muscipula ammonium transporter DmAMT1 was localized in gland complexes where its expression was upregulated upon secretion. These clusters of cells decorating the inner trap surface are engaged in (1) secretion of an acidic digestive enzyme cocktail and (2) uptake of prey-derived nutrients. Voltage clamp of Xenopus oocytes expressing DmAMT1 and membrane potential recordings with DmAMT1-expressing Dionaea glands were used to monitor and compare electrophysiological properties of DmAMT1 in vitro and in planta. DmAMT1 exhibited the hallmark biophysical properties of a NH4(+)-selective channel. At depolarized membrane potentials (Vm = 0), the Km (3.2 ± 0.3 mM) indicated a low affinity of DmAMT1 for ammonium that increased systematically with negative going voltages. Upon hyperpolarization to, e.g., -200 mV, a Km of 0.14 ± 0.015 mM documents the voltage-dependent shift of DmAMT1 into a NH4(+) transport system of high affinity. CONCLUSIONS We suggest that regulation of glandular DmAMT1 and membrane potential readjustments of the endocrine cells provide for effective adaptation to varying, prey-derived ammonium sources.
Plant Cell and Environment | 2008
Jörg Kruse; Mark A. Adams
Using an exponential model that relies on Arrhenius kinetics, we explored Type I, Type II and dynamic (e.g. declining Q(10) with increasing temperature) responses of respiration to temperature. Our Arrhenius model provides three parameters: R(REF) (the base of the exponential model, nmol g(-1) s(-1)), E(0) (the overall activation energy of oxygen reduction that dominates its temperature sensitivity, kJ mol(-1)) and delta (that describes dynamic responses of E(0) to measurement temperature, 10(3) K(2)). Two parameters, E(0) and delta, are tightly linked. Increases in overall activation energy at a reference temperature were inversely related to changes in delta. At an E(0) of ca. 45 kJ mol(-1), delta approached zero, and respiratory temperature response was strictly Arrhenius-like. Physiologically, these observations suggest that as contributions of AOX to combined oxygen reduction increase, E(0)(REF) decreases because of different temperature sensitivities for V(max), and delta increases because of different temperature sensitivities for K(1/2) of AOX and COX. The balance between COX and AOX activity helps regulate plant metabolism by adjusting the demand for ATP to that for reducing power and carbon skeleton intermediates. Our approach enables determination of respiratory capacity in vivo and opens a path to development of process-based models of plant respiration.
Oecologia | 2014
Jörg Kruse; Peng Gao; Anne Honsel; Jürgen Kreuzwieser; Tim Burzlaff; Saleh A. Al-Farraj; Rainer Hedrich; Heinz Rennenberg
Plant carnivory represents an exceptional means to acquire N. Snap traps of Dionaea muscipula serve two functions, and provide both N and photosynthate. Using 13C/15N-labelled insect powder, we performed feeding experiments with Dionaea plants that differed in physiological state and N status (spring vs. autumn plants). We measured the effects of 15N uptake on light-saturated photosynthesis (Amax), dark respiration (RD) and growth. Depending on N status, insect capture briefly altered the dynamics of RD/Amax, reflecting high energy demand during insect digestion and nutrient uptake, followed by enhanced photosynthesis and growth. Organic N acquired from insect prey was immediately redistributed, in order to support swift renewal of traps and thereby enhance probability of prey capture. Respiratory costs associated with permanent maintenance of the photosynthetic machinery were thereby minimized. Dionaea’s strategy of N utilization is commensurate with the random capture of large prey, occasionally transferring a high load of organic nutrients to the plant. Our results suggest that physiological adaptations to unpredictable resource availability are essential for Dionaea’s success with regards to a carnivorous life style.
Plant and Soil | 2010
Jörg Kruse; Robert Hänsch; Ralf R. Mendel; Heinz Rennenberg
The root/shoot-ratio is a simple parameter to describe the systemic response of plants to alterations of their nutritional status, as indicated by the C/N-balance of leaves. The ‘functional equilibrium hypothesis’ holds that leaf growth is limited by the supply of nitrogen from the roots, whereas root growth depends on the carbon supply from leaves. The nature of the systemic control that balances root and shoot growth is not fully understood. Previous experiments have shown that root growth of transformed tobacco plants, which lack functional root nitrate reductase, was severely impeded, when plants were grown on NO3− as the sole N-source. In these experiments, the root/shoot-ratio was correlated with the Glutamate/Glutamine-ratio of roots. In the present study we tested the hypothesis that high internal Glu contents (in relation to Gln) inhibit root growth. Wild type and transformed tobacco plants were given access to both NH4 and NO3, and were cultivated at ambient and elevated pCO2 in order to vary carbon availability. The uptake and assimilation of NH4+ by the root was significantly higher in transformed than in wild type tobacco, in particular at elevated pCO2. Consequently, the Glu/Gln-ratio in the root of transformants was significantly lower than in NO3− -grown plants, and was, in the present study, not different from the wild type. However, we failed to observe a correlation between plant architecture and the Glu/Gln-ratio of roots, suggesting that signals arising from the immediate products of nitrate reduction (nitrite) are involved in the systemic control of root growth. Furthermore the synthesis of root-derived signals, which affect N-turnover, starch re-mobilization and the growth of leaves, appears to be associated with root nitrate reduction. This enzymatic step seems to be indispensable for the systemic control of biomass partitioning, and plays a crucial role for the integration of carbon and nitrogen metabolism at the whole plant level.
Mycorrhiza | 2006
Hounayda Mansouri-Bauly; Jörg Kruse; Zuzana Sýkorová; Ursula Scheerer; Stanislav Kopriva
The importance of the ectomycorrhiza symbiosis for plant acquisition of phosphorus and nitrogen is well established whereas its contribution to sulfur nutrition is only marginally understood. In a first step to investigate the role of ectomycorrhiza in plant sulfur nutrition, we characterized sulfate and glutathione uptake in Laccaria bicolor. By studying the regulation of sulfate uptake in this ectomycorrhizal fungus, we found that in contrast to bacteria, yeast, and plants, sulfate uptake in L. bicolor was not feedback-inhibited by glutathione. On the other hand, sulfate uptake was increased by sulfur starvation as in other organisms. The activity of 3′-phosphoadenosine 5′-phosphosulfate reductase, the key enzyme of the assimilatory sulfate reduction pathway in fungi, was increased by sulfur starvation and decreased after treatment with glutathione revealing an uncoupling of sulfate uptake and reduction in the presence of reduced sulfur compounds. These results support the hypothesis that L. bicolor increases sulfate supply to the plant by extended sulfate uptake and the plant provides the ectomycorrhizal fungus with reduced sulfur.
Developments in environmental science | 2013
Jörg Kruse; Judy Simon; Heinz Rennenberg
Climate change will likely affect the carbon balance of terrestrial soils via shifts in photosynthetic carbon input relative to soil respiratory CO2 loss. This review is focused on the effects of enhanced temperature and altered precipitation on soil respiration—that is, the sum of autotrophic root and heterotrophic microbial respiration. We highlight key processes that determine the substrate supply for the microbial decomposer community. These processes include (i) root exudation of low-molecular carbon compounds, (ii) enzymatic degradation of labile and recalcitrant soil organic matter (SOM) and (iii) physicochemical protection of SOM. The sensitivities of these processes to soil temperature and moisture differ, aggravating mechanistic interpretation of bulk soil respiration in response to global change. Variation in soil respiration can also result from acclimation of autotrophic root respiration, or shifts in microbial carbon use efficiency. On the basis of such key processes, we evaluate the apparent flexibility of instantaneous temperature responses of soil respiration.
Plant Cell and Environment | 2008
Jörg Kruse; Peter Hopmans; Mark A. Adams
We showed that temperature responses of dark respiration for foliage of Pinus radiata could be approximated by Arrhenius kinetics, whereby E(0) determines shape of the exponential response and denotes overall activation energy of respiratory metabolism. Reproducible and predictable deviation from strict Arrhenius kinetics depended on foliage age, and differed between R(CO2) and R(O2). Inhibition of oxygen reduction (R(O2)) by cyanide (inhibiting COX) or SHAM (inhibiting AOX) resulted in reproducible changes of the temperature sensitivity for R(O2), but did not affect R(CO2). Enthalpic growth--preservation of electrons in anabolic products--could be approximated with knowledge of four variables: activation energies (E(0)) for both R(CO2) and R(O2), and basal rates of respiration at a low reference temperature (R(REF)). Rates of enthalpic growth by P. radiata needles were large in spring due to differences between R(REF) of oxidative decarboxylation and that of oxygen reduction, while overall activation energies for the two processes were similar. Later during needle development, enthalpic growth was dependent on differences between E(0) for R(CO2) as compared with R(O2), and increased E(0)(R(O2)) indicated greater contributions of cytochrome oxidase to accompany the switch from carbohydrate sink to source. Temperature-dependent increments in stored energy can be calculated as the difference between R(CO2)DeltaH(CO2) and R(O2)DeltaH(O2).
New Phytologist | 2015
Peng Gao; Theresa Sofi Loeffler; Anne Honsel; Jörg Kruse; Elzbieta Krol; Sönke Scherzer; Ines Kreuzer; Felix Bemm; Franz Buegger; Tim Burzlaff; Rainer Hedrich; Heinz Rennenberg
Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipulas reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH₄(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH₄(+) was mediated by 2.5-fold higher expression of the NH₄(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH₄(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Mark A. Adams; Heinz Rennenberg; Jörg Kruse
In their recent paper, Heskel et al. (1) claim for leaf respiration that “Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response…” and present an empirical, polynomial model of leaf respiration suitable for all biomes and plant functional types. Our polynomial model (2), an extension of the Arrhenius function, provides the same predictive power as described by Heskel et al. (1). In fact, different approaches and methodologies have yielded models of the same form, and generate close to identical results (Figs. 1 and 2).