Jörg-Uwe Pott
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg-Uwe Pott.
Astronomy and Astrophysics | 2013
L. Burtscher; Klaus Meisenheimer; Konrad R. W. Tristram; W. Jaffe; S. F. Hönig; Richard Davies; Makoto Kishimoto; Jörg-Uwe Pott; Huub Röttgering; M. Schartmann; G. Weigelt; Sebastian Wolf
The AGN-heated dust distribution (the torus) is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear Super-Massive Black Hole. Yet, even its most basic structural properties (such as its extent, geometry and elongation) are unknown for all but a few archetypal objects. Since most AGNs are unresolved in the mid-infrared, we utilize the MID-infrared interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) that is sensitive to structures as small as a few milli-arcseconds (mas). We present here an extensive amount of new interferometric observations from the MIDI AGN Large Program (2009 - 2011) and add data from the archive to give a complete view of the existing MIDI observations of AGNs. Additionally, we have obtained high-quality mid-infrared spectra from VLT/VISIR. We present correlated and total flux spectra for 23 AGNs and derive flux and size estimates at 12 micron using simple axisymmetric geometrical models. Perhaps the most surprising result is the relatively high level of unresolved flux and its large scatter: The median point source fraction is 70 % for type 1 and 47 % for type 2 AGNs meaning that a large part of the flux is concentrated on scales smaller than about 5 mas (0.1 - 10 pc). Among sources observed with similar spatial resolution, it varies from 20 % - 100 %. For 18 of the sources, two nuclear components can be distinguished in the radial fits. While these models provide good fits to all but the brightest sources, significant elongations are detected in eight sources. The half-light radii of the fainter sources are smaller than expected from the size ~ L^0.5 scaling of the bright sources and show a large scatter, especially when compared to the relatively tight size--luminosity relation in the near-infrared.
The Astrophysical Journal | 2012
Beth A. Biller; Sylvestre Lacour; A. Juhász; M. Benisty; G. Chauvin; J. Olofsson; Jörg-Uwe Pott; A. Müller; Aurora Sicilia-Aguilar; M. Bonnefoy; Peter G. Tuthill; Philippe Thebault; Thomas Henning; Aurélien Crida
With the uniquely high contrast within 0.1 ({Delta}mag(L) = 5-6.5 mag) available using Sparse Aperture Masking with NACO at Very Large Telescope, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88 {+-} 5 mas (12.8 {+-} 1.5 AU at 145 pc) and flux ratios in H, K, and L of 0.016 {+-} 0.007, 0.012 {+-} 0.008, and 0.0086 {+-} 0.0011, respectively (3{sigma} errors), relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion with an estimated mass of {approx}0.1-0.4 M{sub Sun }. HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.
IFAC Proceedings Volumes | 2014
Alexander Keck; Jörg-Uwe Pott; Oliver Sawodny
Abstract Recent efforts to improve imaging quality of extremely large telescopes are based on compensating for structural vibrations with a compensation mirror canceling out the optical pathway deviations caused by vibrations of the telescope structure. To drive this mirror, the displacement of optical elements has to be reconstructed online from accelerometer measurements. The goal is to obtain high reconstruction accuracy and good disturbance rejection in spite of low-frequency drift and high-frequency noise highly deteriorating the measurements. A reconstructor based on double integration and filtering, a disturbance observer and a novel reconstruction approach based on adaptive resonators are implemented on a laboratory test setup simulating typical telescope vibrations. The true displacement is measured with a strain gauge and serves as a reference for reconstruction accuracy.
Experimental Astronomy | 2018
Denis Defrere; Olivier Absil; J.-P. Berger; T. Boulet; W. C. Danchi; S. Ertel; A. Gallenne; François Hénault; P. Hinz; E. Huby; Michael J. Ireland; Stefan Kraus; Lucas Labadie; J.-B. Le Bouquin; G. Martin; A. Matter; A. Mérand; B. Mennesson; Stefano Minardi; John D. Monnier; Barnaby Norris; G. Orban de Xivry; Ettore Pedretti; Jörg-Uwe Pott; Maddalena Reggiani; Eugene Serabyn; Jean Surdej; Konrad R. W. Tristram; Julien Woillez
The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10−u20093 in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10−u20094 are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 μ
IEEE Transactions on Control Systems and Technology | 2017
Michael C. Böhm; Jörg-Uwe Pott; M. Kürster; Olivier Sawodny; Denis Defrere; Philip M. Hinz
upmu
Proceedings of SPIE | 2010
M. Brix; Jörg-Uwe Pott; Thomas Bertram; Steffen Rost; J. Borelli; T. M. Herbst; Martin Kuerster; Ralf-Rainer Rohloff
m), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed. This project is called Hi-5 for High-contrast Interferometry up to 5 μm.
Proceedings of SPIE | 2012
Albert R. Conrad; Carmelo Arcidiacono; Harald Baumeister; Maria Bergomi; Thomas Bertram; Juergen Berwein; Chris Biddick; Peter Bizenberger; Matthieu Brangier; Florian Briegel; A. Brunelli; Joar Brynnel; Lorenzo Busoni; Norm Cushing; Fulvio De Bonis; Michele D. De La Peña; Simone Esposito; Jacopo Farinato; Luca Fini; Richard F. Green; T. M. Herbst; Ralph Hofferbert; Frank Kittmann; Martin Kuerster; W. Laun; Daniel Meschke; Lars Mohr; Aleksei Pavlov; Jörg-Uwe Pott; Alfio Puglisi
In ground-based astronomy, aberrations due to structural vibrations, such as piston, limit the achievable resolution and cannot be corrected using adaptive optics (AO) for large telescopes. We present a model-free strategy to estimate and compensate piston aberrations due to the vibrations of optical components using accelerometer disturbance feed forward, eventually allowing the use of fainter guide stars both for the fringe detector and in the AO loop. Because the correction performance is very sensitive to signal delays, we present a strategy to add a delay compensation to the developed disturbance estimator, which can, in principle, be applied to many other applications outside of astronomy that lack observer performance due to a measurement delay or need a prediction to compensate for input delays. The ability to estimate vibration disturbances in the critical frequency range of 8–60 Hz is demonstrated with on sky data from the Large Binocular Telescope (LBT) Interferometer, an interferometer at the LBT. The experimental results are promising, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 3 (rms), which is significantly better than any currently commissioned system.
Proceedings of SPIE | 2016
Davide Massari; G. Fiorentino; Eline Tolstoy; Alan W. McConnachie; Remko Stuik; Laura Schreiber; David Andersen; Yann Clenet; Richard Davies; Damien Gratadour; Konrad Kuijken; Ramón Navarro; Jörg-Uwe Pott; Gabriele Rodeghiero; Paolo Turri; Gijsbert Verdoes Kleijn
We review the status of hardware developments related to the Linc-Nirvana optical path difference (OPD) control. The status of our telescope vibration measurements is given. We present the design concept of a feed-forward loop to damp the impact of telescope mirror vibrations on the OPD seen by Linc-Nirvana. At the focus of the article is a description of the actuator of the OPD control loop. The weight and vibration optimized construction of this actuator (aka piston mirror) and its mount has a complex dynamical behavior, which prevents classical PI feedback control from delivering fast and precise motion of the mirror surface. Therefore, an H-; optimized control strategy will be applied, custom designed for the piston mirror. The effort of realizing a custom controller on a DSP to drive the piezo is balanced by the outlook of achieving more than 5x faster servo bandwidths. The laboratory set-up to identify the system, and verify the closed loop control performance is presented. Our goal is to achieve 30 Hz closed-loop control bandwidth at a precision of 30 nm.
The Astrophysical Journal | 2015
Jonathan Stern; Joseph F. Hennawi; Jörg-Uwe Pott
LINC-NIRVANA will employ four wave front sensors to realize multi-conjugate correction on both arms of a Fizeau interferometer for LBT. Of these, one of the two ground-layer wave front sensors, together with its infrared test camera, comprise a stand-alone test platform for LINC-NIRVANA. Pathfinder is a testbed for full LINC-NIRVANA intended to identify potential interface problems early in the game, thus reducing both technical, and schedule, risk. Pathfinder will combine light from multiple guide stars, with a pyramid sensor dedicated to each star, to achieve ground-layer AO correction via an adaptive secondary: the 672-actuator thin shell at the LBT. The ability to achieve sky coverage by optically coadding light from multiple stars has been previously demonstrated; and the ability to achieve correction with an adaptive secondary has also been previously demonstrated. Pathfinder will be the first system at LBT to combine both of these capabilities. Since reporting our progress at A04ELT2, we have advanced the project in three key areas: definition of specific goals for Pathfinder tests at LBT, more detail in the software design and planning, and calibration. We report on our progress and future plans in these three areas, and on the project overall.
IFAC Proceedings Volumes | 2013
Michael C. Böhm; Jörg-Uwe Pott; M. Kürster; Oliver Sawodny
With the aim of paving the road for future accurate astrometry with MICADO at the European-ELT, we performed an astrometric study using two different but complementary approaches to investigate two critical components that contribute to the total astrometric accuracy. First, we tested the predicted improvement in the astrometric measurements with the use of an atmospheric dispersion corrector (ADC) by simulating realistic images of a crowded Galactic globular cluster. We found that the positional measurement accuracy should be improved by up to ∼ 2 mas with the ADC, making this component fundamental for high-precision astrometry. Second, we analysed observations of a globular cluster taken with the only currently available Multi-Conjugate Adaptive Optics assisted camera, GeMS/GSAOI at Gemini South. Making use of previously measured proper motions of stars in the field of view, we were able to model the distortions affecting the stellar positions. We found that they can be as large as ∼ 200 mas, and that our best model corrects them to an accuracy of ∼ 1 mas. We conclude that future astrometric studies with MICADO requires both an ADC and an accurate modelling of distortions to the field of view, either through an a-priori calibration or an a-posteriori correction.