Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge A. Almenara is active.

Publication


Featured researches published by Jorge A. Almenara.


Cancer Research | 2009

Targeting Sphingosine Kinase 1 Inhibits Akt Signaling, Induces Apoptosis, and Suppresses Growth of Human Glioblastoma Cells and Xenografts

Dmitri Kapitonov; Jeremy C. Allegood; Clint Mitchell; Nitai C. Hait; Jorge A. Almenara; Jeffrey Kroll Adams; Robert Elliot Zipkin; Paul Dent; Tomasz Kordula; Sheldon Milstien; Sarah Spiegel

Sphingosine-1-phosphate is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce sphingosine-1-phosphate, is up-regulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and nonestablished human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of extracellular signal-regulated kinase 1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the c-Jun-NH(2)-kinase pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced the tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization, and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease.


Cancer Research | 2007

The Multikinase Inhibitor Sorafenib Potentiates TRAIL Lethality in Human Leukemia Cells in Association with Mcl-1 and cFLIPL Down-regulation

Roberto R. Rosato; Jorge A. Almenara; Stefanie Coe; Steven Grant

Interactions between the multikinase inhibitor sorafenib and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were examined in malignant hematopoietic cells. Pretreatment (24 h) of U937 leukemia cells with 7.5 micromol/L sorafenib dramatically increased apoptosis induced by sublethal concentrations of TRAIL/Apo2L (75 ng/mL). Similar interactions were observed in Raji, Jurkat, Karpas, K562, U266 cells, primary acute myelogenous leukemia blasts, but not in normal CD34+ bone marrow cells. Sorafenib/TRAIL-induced cell death was accompanied by mitochondrial injury and release of cytochrome c, Smac, and AIF into the cytosol and caspase-9, caspase-3, caspase-7, and caspase-8 activation. Sorafenib pretreatment down-regulated Bcl-xL and abrogated Mcl-1 expression, whereas addition of TRAIL sharply increased Bid activation, conformational change of Bak (ccBak) and Bax (ccBax), and Bax translocation. Ectopic Mcl-1 expression significantly attenuated sorafenib/TRAIL-mediated lethality and dramatically reduced ccBak while minimally affecting levels of ccBax. Similarly, inhibition of the receptor-mediated apoptotic cascade with a caspase-8 dominant-negative mutant significantly blocked sorafenib/TRAIL-induced lethality but not Mcl-1 down-regulation or Bak/Bax conformational change, indicating that TRAIL-mediated receptor pathway activation is required for maximal lethality. Sorafenib/TRAIL did not increase expression of DR4/DR5, or recruitment of procaspase-8 or FADD to the death-inducing signaling complex (DISC), but strikingly increased DISC-associated procaspase-8 activation. Sorafenib also down-regulated cFLIP(L), most likely through a translational mechanism, in association with diminished eIF4E phosphorylation, whereas ectopic expression of cFLIP(L) significantly reduced sorafenib/TRAIL lethality. Together, these results suggest that in human leukemia cells, sorafenib potentiates TRAIL-induced lethality by down-regulating Mcl-1 and cFLIP(L), events that cooperate to engage the intrinsic and extrinsic apoptotic cascades, culminating in pronounced mitochondrial injury and apoptosis.


Molecular Pharmacology | 2005

The Histone Deacetylase Inhibitor LAQ824 Induces Human Leukemia Cell Death through a Process Involving XIAP Down- Regulation, Oxidative Injury, and the Acid Sphingomyelinase- Dependent Generation of Ceramide

Roberto R. Rosato; Sonia C. Maggio; Jorge A. Almenara; Shawn G. Payne; Peter Atadja; Sarah Spiegel; Paul Dent; Steven Grant

Determinants of differentiation and apoptosis induction by the novel histone deacetylase inhibitor (HDACI) LAQ824 were examined in human leukemia cells (U937 and Jurkat). Exposure of U937 cells to a low concentration of LAQ824 (30 nM) resulted in a delayed (2 h) increase in reactive oxygen species (ROS), induction of p21WAF1/CIP1, pRb dephosphorylation, growth arrest of cells in G0/G1 phase, and differentiation. On the other hand, exposure of cells to a higher concentration of LAQ824 (75 nM) resulted in the early (30 min) generation of ROS, arrest of cells in G2/M phase, down-regulation of XIAP (at the transcriptional level) and Mcl-1 (through a caspase-mediated process), the acid sphingomyelinase-dependent generation of ceramide, and profound mitochondrial injury, caspase activation, and apoptosis. LAQ824-induced lethality in U937 cells did not involve the extrinsic apoptotic pathway, nor was it associated with death receptor up-regulation; instead, it was markedly inhibited by ectopic expression of Bcl-2, Bcl-xL, XIAP, and Mcl-1. The free radical scavenger N-acetyl cysteine blocked LAQ824-mediated ROS generation, mitochondrial injury, Mcl-1 down-regulation, ceramide generation, and apoptosis, suggesting a primary role for oxidative injury in LAQ824 lethality. Together, these findings indicate that LAQ824-induced lethality represents a multifactorial process in which LAQ824-mediated ROS generation is necessary but not sufficient to induce apoptosis, and that the degree of XIAP and Mcl-1 down-regulation and ceramide generation determines whether this agent engages a maturation rather than an apoptotic program.


Molecular Cancer Therapeutics | 2008

Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions.

Roberto R. Rosato; Jorge A. Almenara; Sonia C. Maggio; Stefanie Coe; Peter Atadja; Paul Dent; Steven Grant

The role of reactive oxygen species (ROS) production on DNA damage and potentiation of fludarabine lethality by the histone deacetylase inhibitor (HDACI) LAQ-824 was investigated in human leukemia cells. Preexposure (24 h) of U937, HL-60, Jurkat, or K562 cells to LAQ-824 (40 nmol/L) followed by fludarabine (0.4 μmol/L) dramatically potentiated apoptosis (≥75%). LAQ-824 triggered an early ROS peak (30 min-3 h), which declined by 6 h, following LAQ-824-induced manganese superoxide dismutase 2 (Mn-SOD2) upregulation. LAQ-824/fludarabine lethality was significantly diminished by either ROS scavengers N-acetylcysteine or manganese (III) tetrakis (4-benzoic acid) porphyrin or ectopic Mn-SOD2 expression and conversely increased by Mn-SOD2 antisense knockdown. During this interval, LAQ-824 induced early (4-8 h) increases in γ-H2AX, which persisted (48 h) secondary to LAQ-824-mediated inhibition of DNA repair (e.g., down-regulation of Ku86 and Rad50, increased Ku70 acetylation, diminished Ku70 and Ku86 DNA-binding activity, and down-regulated DNA repair genes BRCA1, CHEK1, and RAD51). Addition of fludarabine further potentiated DNA damage, which was incompatible with cell survival, and triggered multiple proapoptotic signals including activation of nuclear caspase-2 and release of histone H1.2 into the cytoplasm. The latter event induced activation of Bak and culminated in pronounced mitochondrial injury and apoptosis. These findings provide a mechanistic basis for understanding the role of early HDACI-induced ROS generation and modulation of DNA repair processes in potentiation of nucleoside analogue-mediated DNA damage and lethality in leukemia. Moreover, they show for the first time the link between HDACI-mediated ROS generation and the recently reported DNA damage observed in cells exposed to these agents. [Mol Cancer Ther 2008;7(9):3285–97]


Oncogene | 2004

Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process

Chunrong Yu; Mohamed Rahmani; Jorge A. Almenara; Edward A. Sausville; Paul Dent; Steven Grant

Effects of the tyrphostin tyrosine kinase inhibitor adaphostin (NSC 680410) have been examined in human leukemia cells (Jurkat, U937) in relation to mitochondrial events, apoptosis, and perturbations in signaling and cell cycle regulatory events. Exposure of cells to adaphostin concentrations ⩾0.75 μM for intervals ⩾6 h resulted in a pronounced release of cytochrome c and AIF, activation of caspase-9, -8, and -3, and apoptosis. These events were accompanied by the caspase-independent downregulation of Raf-1, inactivation of MEK1/2, ERK, Akt, p70S6K, dephosphorylation of GSK-3, and activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK. Adaphostin also induced cleavage and dephosphorylation of pRb on CDK2- and CDK4-specific sites, as well as the caspase-dependent downregulation of cyclin D1. Inducible expression of a constitutively active MEK1 construct markedly diminished adaphostin-induced cytochrome c and AIF release, JNK activation, and apoptosis in Jurkat cells. Ectopic expression of Raf-1 or constitutively activated (myristolated) Akt also significantly attenuated adaphostin-induced apoptosis, but protection was less than that conferred by enforced activation of MEK. Lastly, antioxidants (e.g., L-N-acetylcysteine; L-NAC) opposed adaphostin-mediated mitochondrial dysfunction, Raf-1/MEK/ERK downregulation, JNK activation, and apoptosis. However, in contrast to L-NAC, enforced activation of MEK failed to block adaphostin-mediated ROS generation. Together, these findings demonstrate that the tyrphostin adaphostin induces multiple perturbations in signal transduction pathways in human leukemia cells, particularly inactivation of the cytoprotective Raf-1/MEK/ERK and Akt cascades, that culminate in mitochondrial injury, caspase activation, and apoptosis. They also suggest that adaphostin-related oxidative stress acts upstream of perturbations in these signaling pathways to trigger the cell death process.


Journal of Biological Chemistry | 2010

Histone Deacetylase Inhibitors Activate NF-κB in Human Leukemia Cells through an ATM/NEMO-related Pathway

Roberto R. Rosato; Sarah Kolla; Stefanie K. Hock; Jorge A. Almenara; Ankita Patel; Sanjay Amin; Peter Atadja; Paul B. Fisher; Paul Dent; Steven Grant

Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.


Molecular Cancer Therapeutics | 2007

Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions.

Roberto R. Rosato; Jorge A. Almenara; Sarah S. Kolla; Sonia C. Maggio; Stefanie Coe; María Sofía Giménez; Paul Dent; Steven Grant

The mechanism and functional significance of XIAP and Mcl-1 down-regulation in human leukemia cells exposed to the histone deacetylase inhibitor vorinostat and the cyclin-dependent kinase inhibitor flavopiridol was investigated. Combined exposure of U937 leukemia cells to marginally toxic concentrations of vorinostat and flavopiridol resulted in a marked increase in mitochondrial damage and apoptosis accompanied by pronounced reductions in XIAP and Mcl-1 mRNA and protein. Down-regulation of Mcl-1 and XIAP expression by vorinostat/flavopiridol was associated with enhanced inhibition of phosphorylation of RNA polymerase II and was amplified by caspase-mediated protein degradation. Chromatin immunoprecipitation analysis revealed that XIAP and Mcl-1 down-regulation were also accompanied by both decreased association of nuclear factor-κB (XIAP) and increased E2F1 association (Mcl-1) with their promoter regions, respectively. Ectopic expression of Mcl-1 but not XIAP partially protected cells from flavopiridol/vorinostat–mediated mitochondrial injury at 48 h, but both did not significantly restored clonogenic potential. Flavopiridol/vorinostat–mediated transcriptional repression of XIAP, Mcl-1–enhanced apoptosis, and loss of clonogenic potential also occurred in primary acute myelogenous leukemia (AML) blasts. Together, these findings indicate that transcriptional repression of XIAP and Mcl-1 by flavopiridol/vorinostat contributes functionally to apoptosis induction at early exposure intervals and raise the possibility that expression levels may be a useful surrogate marker for activity in current trials. [Mol Cancer Ther 2007;6(2):692–702]


Journal of Biological Chemistry | 2010

HDAC inhibitors activate NF-κB in human leukemia cells through an ATM/nemo-related pathway

Roberto R. Rosato; Sarah S. Kolla; Stefanie K. Hock; Jorge A. Almenara; Ankita Patel; Sanjay Amin; Peter Atadja; Paul Dent; Steven Grant

Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.


Molecular Pharmacology | 2005

Flavopiridol and histone deacetylase inhibitors promote mitochondrial injury and cell death in human leukemia cells that overexpress Bcl-2.

Girija Dasmahapatra; Jorge A. Almenara; Steven Grant

Interactions between the cyclin-dependent kinase (CDK) inhibitor flavopiridol and histone deacetylase (HDAC) inhibitors (suberoylanilide hydroxamide and sodium butyrate) were examined in human leukemia cells (U937 and HL-60) ectopically expressing Bcl-2/Bcl-xL and in primary AML cells. Coadministration of flavopiridol with HDAC inhibitors synergistically potentiated mitochondrial damage (cytochrome c, second mitochondria-derived activator of caspases/direct IAP binding protein with low pI, and apoptosis-inducing factor release), caspase activation, poly(ADP-ribose) polymerase degradation, and cell death in both wild type and Bcl-2- or Bcl-xL-overexpressing cells and induced a pronounced loss of clonogenicity. In contrast, Bcl-2 and Bcl-xL largely blocked these events in cells exposed to the cytotoxic agent 1-β-d-arabinofuranosylcytosine (ara-C). Enforced expression of dominant-negative Fas-associated death domain failed to protect cells from the flavopiridol/histone deacetylase inhibitor (HDACI) regimen, arguing against the involvement of the receptor pathway in lethality. Ectopic expression of a phosphorylation loop-deleted Bcl-2 or Bcl-2 lacking the serine70 phosphorylation site, which dramatically protected cells from ara-C lethality, delayed but did not prevent flavopiridol/HDAC inhibitor-induced mitochondrial injury, cell death, or loss of clonogenicity. Ectopic expression of Bcl-2 or Bcl-xL was also unable to prevent the flavopiridol/HDACI regimen from inducing a conformational change in and mitochondrial translocation of Bax, and it did not attenuate Bax dimerization. As a whole, these findings indicate that in contrast to certain conventional cytotoxic agents such as ara-C, overexpression of Bcl-2 or Bcl-xL are largely ineffective in preventing perturbations in Bax, mitochondrial injury, and cell death in human leukemia cells subjected to simultaneous CDK and HDAC inhibition. They also raise the possibility that a strategy combining CDK and HDAC inhibitors may be effective against drug-resistant leukemia cells overexpressing Bcl-2 or Bcl-xL.


Vascular Pharmacology | 2009

Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes.

Ramesh Natarajan; Fadi N. Salloum; Bernard J. Fisher; Lisa Smithson; Jorge A. Almenara; Alpha A. Fowler

Ischemia/reperfusion (I/R) unleashes cellular events that threaten organ survival. I/R affects endoplasmic reticulum (ER) integrity and initiates the unfolded protein response (UPR). The adaptive arm of the UPR attenuates ER stress by increasing expression of chaperones promoting proper protein folding. However, failure to resolve ER stress leads to apoptotis. We recently showed that prolyl hydroxylase inhibition (PHI) attenuated post-ischemic cardiac injury. We hypothesized that PHI attenuated myocardial I/R injury through modulation of the UPR. We show for the first time that PHI activates all three regulatory arms of the UPR in murine microvascular endothelial cells and in mouse hearts. Cardiac I/R activated expression of pro-apoptotic CHOP (2.8 fold, n=3, p<0.01). PHI significantly decreased CHOP expression (50%, n=3, p<0.05) in post-ischemic hearts. PHI also induced activating transcription factor 4 (3.5 fold, n=3, p<0.001), glucose-regulated protein 78 (6 fold, n=3, p<0.001) and ER degradation-enhancing alpha-mannosidase-like protein (2.8 fold, n=3, p<0.001) expression in reperfusing hearts. Thus PHI resulted in significant reduction of apoptosis in post-ischemic myocardium. Our studies suggest that PHI induces protective ER stress proteins and attenuates post-ischemic myocardial damage by decreasing the pro-apoptotic components of the UPR.

Collaboration


Dive into the Jorge A. Almenara's collaboration.

Top Co-Authors

Avatar

Steven Grant

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Paul Dent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Roberto R. Rosato

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Stefanie Coe

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sonia C. Maggio

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Celeste N. Powers

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Mohamed Rahmani

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Peter Atadja

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Catherine I. Dumur

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Roberto Rosato

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge