Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto R. Rosato is active.

Publication


Featured researches published by Roberto R. Rosato.


Leukemia | 2002

Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA)

Jorge A. Almenara; Roberto R. Rosato; Steven Grant

Interactions between the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) and the cyclin-dependent kinase (CDK) inhibitor flavopiridol (FP) were examined in human leukemia cells. Simultaneous exposure (24 h) of myelomonocytic leukemia cells (U937) to SAHA (1 μM) and FP (100 nM), which were minimally toxic alone (1.5 ± 0.5% and 16.3 ± 0.5% apoptosis respectively), produced a dramatic increase in cell death (ie 63.2 ± 1.9% apoptotic), reflected by morphology, procaspase-3 and -8 cleavage, Bid activation, diminished ΔΨm, and enhanced cytochrome c release. FP blocked SAHA-mediated up-regulation of p21CIP1 and CD11b expression, while inducing caspase-dependent Bcl-2 and pRb cleavage. Similar interactions were observed in HL-60 and Jurkat leukemic cells. Enhanced apoptosis in SAHA/FP-treated cells was accompanied by a marked reduction in clonogenic surivival. Ectopic expression of either dominant-negative caspase-8 (C8-DN) or CrmA partially attenuated SAHA/FP-mediated apoptosis (eg 45 ± 1.5% and 38.2 ± 2.0% apoptotic vs 78 ± 1.5% in controls) and Bid cleavage. SAHA/FP induced-apoptosis was unaffected by the free radical scavenger L-N-acetyl cysteine or the PKC inhibitor GFX. Finally, ectopic Bcl-2 expression marginally attenuated SAHA/FP-related apoptosis/cytochrome c release, and failed to restore clonogenicity in cells exposed to these agents. Together, these findings indicate that SAHA and FP interact synergistically to induce mitochondrial damage and apoptosis in human leukemia cells, and suggest that this process may also involve engagement of the caspase-8-dependent apoptotic cascade.


Cancer Research | 2004

The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells

Sonia C. Maggio; Roberto R. Rosato; Lora Kramer; Yun Dai; Mohamed Rahmani; David S. Paik; Ann C. Czarnik; Shawn G. Payne; Sarah Spiegel; Steven Grant

Interactions between the novel benzamide histone deacetylase (HDAC) inhibitor MS-275 and fludarabine were examined in lymphoid and myeloid human leukemia cells in relation to mitochondrial injury, signal transduction events, and apoptosis. Prior exposure of Jurkat lymphoblastic leukemia cells to a marginally toxic concentration of MS-275 (e.g., 500 nm) for 24 h sharply increased mitochondrial injury, caspase activation, and apoptosis in response to a minimally toxic concentration of fludarabine (500 nm), resulting in highly synergistic antileukemic interactions and loss of clonogenic survival. Simultaneous exposure to MS-275 and fludarabine also led to synergistic effects, but these were not as pronounced as observed with sequential treatment. Similar interactions were noted in the case of (a) other human leukemia cell lines (e.g., U937, CCRF-CEM); (b) other HDAC inhibitors (e.g., sodium butyrate); and (c) other nucleoside analogues (e.g., 1-β-d-arabinofuranosylcytosine, gemcitabine). Potentiation of fludarabine lethality by MS-275 was associated with acetylation of histones H3 and H4, down-regulation of the antiapoptotic proteins XIAP and Mcl-1, enhanced cytosolic release of proapoptotic mitochondrial proteins (e.g., cytochrome c, Smac/DIABLO, and apoptosis-inducing factor), and caspase activation. It was also accompanied by the caspase-dependent down-regulation of p27KIP1, cyclins A, E, and D1, and cleavage and diminished phosphorylation of retinoblastoma protein. However, increased lethality of the combination was not associated with enhanced fludarabine triphosphate formation or DNA incorporation and occurred despite a slight reduction in the S-phase fraction. Prior exposure to MS-275 attenuated fludarabine-mediated activation of MEK1/2, extracellular signal-regulated kinase, and Akt, and enhanced c-Jun NH2-terminal kinase phosphorylation; furthermore, inducible expression of constitutively active MEK1/2 or Akt significantly diminished MS-275/fludarabine-induced lethality. Combined exposure of cells to MS-275 and fludarabine was associated with a significant increase in generation of reactive oxygen species; moreover, both the increase in reactive oxygen species and apoptosis were largely attenuated by coadministration of the free radical scavenger l-N-acetylcysteine. Finally, prior administration of MS-275 markedly potentiated fludarabine-mediated generation of the proapoptotic lipid second messenger ceramide. Taken together, these findings indicate that the HDAC inhibitor MS-275 induces multiple perturbations in signal transduction, survival, and cell cycle regulatory pathways that lower the threshold for fludarabine-mediated mitochondrial injury and apoptosis in human leukemia cells. They also provide insights into possible mechanisms by which novel, clinically relevant HDAC inhibitors might be used to enhance the antileukemic activity of established nucleoside analogues such as fludarabine.


Cancer Research | 2007

The Multikinase Inhibitor Sorafenib Potentiates TRAIL Lethality in Human Leukemia Cells in Association with Mcl-1 and cFLIPL Down-regulation

Roberto R. Rosato; Jorge A. Almenara; Stefanie Coe; Steven Grant

Interactions between the multikinase inhibitor sorafenib and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were examined in malignant hematopoietic cells. Pretreatment (24 h) of U937 leukemia cells with 7.5 micromol/L sorafenib dramatically increased apoptosis induced by sublethal concentrations of TRAIL/Apo2L (75 ng/mL). Similar interactions were observed in Raji, Jurkat, Karpas, K562, U266 cells, primary acute myelogenous leukemia blasts, but not in normal CD34+ bone marrow cells. Sorafenib/TRAIL-induced cell death was accompanied by mitochondrial injury and release of cytochrome c, Smac, and AIF into the cytosol and caspase-9, caspase-3, caspase-7, and caspase-8 activation. Sorafenib pretreatment down-regulated Bcl-xL and abrogated Mcl-1 expression, whereas addition of TRAIL sharply increased Bid activation, conformational change of Bak (ccBak) and Bax (ccBax), and Bax translocation. Ectopic Mcl-1 expression significantly attenuated sorafenib/TRAIL-mediated lethality and dramatically reduced ccBak while minimally affecting levels of ccBax. Similarly, inhibition of the receptor-mediated apoptotic cascade with a caspase-8 dominant-negative mutant significantly blocked sorafenib/TRAIL-induced lethality but not Mcl-1 down-regulation or Bak/Bax conformational change, indicating that TRAIL-mediated receptor pathway activation is required for maximal lethality. Sorafenib/TRAIL did not increase expression of DR4/DR5, or recruitment of procaspase-8 or FADD to the death-inducing signaling complex (DISC), but strikingly increased DISC-associated procaspase-8 activation. Sorafenib also down-regulated cFLIP(L), most likely through a translational mechanism, in association with diminished eIF4E phosphorylation, whereas ectopic expression of cFLIP(L) significantly reduced sorafenib/TRAIL lethality. Together, these results suggest that in human leukemia cells, sorafenib potentiates TRAIL-induced lethality by down-regulating Mcl-1 and cFLIP(L), events that cooperate to engage the intrinsic and extrinsic apoptotic cascades, culminating in pronounced mitochondrial injury and apoptosis.


Expert Opinion on Investigational Drugs | 2004

Histone deacetylase inhibitors in clinical development

Roberto R. Rosato; Steven Grant

In addition to a variety of other novel agents, interest in histone deacetylase inhibitors (HDACIs) as antineoplastic drugs has recently accelerated and increasing numbers of these compounds have entered clinical trials in humans. HDACIs represent a prototype of molecularly targeted agents that perturb signal transduction, cell cycle-regulatory and survival-related pathways. Newer generation HDACIs have been introduced into the clinical arena that are considerably more potent on a molar basis than their predecessors and are beginning to show early evidence of activity, particularly in hematopoietic malignancies. In addition, there is an increasing appreciation of the fact that HDACIs may act through mechanisms other than induction of histone acetylation and, as in the case of other molecularly-targeted agents, it is conceivable that the ultimate role of HDACIs in cancer therapy will be as modulators of apoptosis induced by other cytotoxic agents. One particularly promising strategy involves attempts to combine HDACIs with other novel agents to promote tumour cell differentiation or apoptosis. The present review focuses on recent insights into the mechanisms by which HDACIs exert their anticancer effects, either alone or in combination with other compounds, as well as attempts to translate these findings into the clinic.


Molecular Pharmacology | 2005

The Histone Deacetylase Inhibitor LAQ824 Induces Human Leukemia Cell Death through a Process Involving XIAP Down- Regulation, Oxidative Injury, and the Acid Sphingomyelinase- Dependent Generation of Ceramide

Roberto R. Rosato; Sonia C. Maggio; Jorge A. Almenara; Shawn G. Payne; Peter Atadja; Sarah Spiegel; Paul Dent; Steven Grant

Determinants of differentiation and apoptosis induction by the novel histone deacetylase inhibitor (HDACI) LAQ824 were examined in human leukemia cells (U937 and Jurkat). Exposure of U937 cells to a low concentration of LAQ824 (30 nM) resulted in a delayed (2 h) increase in reactive oxygen species (ROS), induction of p21WAF1/CIP1, pRb dephosphorylation, growth arrest of cells in G0/G1 phase, and differentiation. On the other hand, exposure of cells to a higher concentration of LAQ824 (75 nM) resulted in the early (30 min) generation of ROS, arrest of cells in G2/M phase, down-regulation of XIAP (at the transcriptional level) and Mcl-1 (through a caspase-mediated process), the acid sphingomyelinase-dependent generation of ceramide, and profound mitochondrial injury, caspase activation, and apoptosis. LAQ824-induced lethality in U937 cells did not involve the extrinsic apoptotic pathway, nor was it associated with death receptor up-regulation; instead, it was markedly inhibited by ectopic expression of Bcl-2, Bcl-xL, XIAP, and Mcl-1. The free radical scavenger N-acetyl cysteine blocked LAQ824-mediated ROS generation, mitochondrial injury, Mcl-1 down-regulation, ceramide generation, and apoptosis, suggesting a primary role for oxidative injury in LAQ824 lethality. Together, these findings indicate that LAQ824-induced lethality represents a multifactorial process in which LAQ824-mediated ROS generation is necessary but not sufficient to induce apoptosis, and that the degree of XIAP and Mcl-1 down-regulation and ceramide generation determines whether this agent engages a maturation rather than an apoptotic program.


Antimicrobial Agents and Chemotherapy | 2012

β-Lactams Increase the Antibacterial Activity of Daptomycin against Clinical Methicillin-Resistant Staphylococcus aureus Strains and Prevent Selection of Daptomycin-Resistant Derivatives

Shrenik Mehta; Christopher R. Singh; Konrad B. Plata; Palas K. Chanda; Arundhati Paul; Sarah Riosa; Roberto R. Rosato; Adriana E. Rosato

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAPr) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the “seesaw effect.” Our study provides evidence that the seesaw effect applies to other β-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAPr MRSA strains but not in MRSA strains expressing homogeneous β-lactam resistance. The antibacterial efficacy of DAP in combination with β-lactams was evaluated in isogenic DAP-susceptible (DAPs)/Dapr MRSA strains originally obtained from patients that failed DAP monotherapy. Both in vitro (MIC, synergy-kill curve) and in vivo (wax worm model) approaches were used. In these models, DAP and a β-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAPr MRSA strains. Mechanistically, β-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease of in vitro mutant selection was observed when DAPs MRSA strains were exposed to DAP. Importantly, the combination of DAP and a β-lactam prevented the selection of DAPr variants. In summary, our data show that the DAP–β-lactam combination may significantly enhance both the in vitro and in vivo efficacy of anti-MRSA therapeutic options against DAPr MRSA infections and represent an option in preventing DAPr selection in persistent or refractory MRSA infections.


Molecular Cancer Therapeutics | 2008

Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions.

Roberto R. Rosato; Jorge A. Almenara; Sonia C. Maggio; Stefanie Coe; Peter Atadja; Paul Dent; Steven Grant

The role of reactive oxygen species (ROS) production on DNA damage and potentiation of fludarabine lethality by the histone deacetylase inhibitor (HDACI) LAQ-824 was investigated in human leukemia cells. Preexposure (24 h) of U937, HL-60, Jurkat, or K562 cells to LAQ-824 (40 nmol/L) followed by fludarabine (0.4 μmol/L) dramatically potentiated apoptosis (≥75%). LAQ-824 triggered an early ROS peak (30 min-3 h), which declined by 6 h, following LAQ-824-induced manganese superoxide dismutase 2 (Mn-SOD2) upregulation. LAQ-824/fludarabine lethality was significantly diminished by either ROS scavengers N-acetylcysteine or manganese (III) tetrakis (4-benzoic acid) porphyrin or ectopic Mn-SOD2 expression and conversely increased by Mn-SOD2 antisense knockdown. During this interval, LAQ-824 induced early (4-8 h) increases in γ-H2AX, which persisted (48 h) secondary to LAQ-824-mediated inhibition of DNA repair (e.g., down-regulation of Ku86 and Rad50, increased Ku70 acetylation, diminished Ku70 and Ku86 DNA-binding activity, and down-regulated DNA repair genes BRCA1, CHEK1, and RAD51). Addition of fludarabine further potentiated DNA damage, which was incompatible with cell survival, and triggered multiple proapoptotic signals including activation of nuclear caspase-2 and release of histone H1.2 into the cytoplasm. The latter event induced activation of Bak and culminated in pronounced mitochondrial injury and apoptosis. These findings provide a mechanistic basis for understanding the role of early HDACI-induced ROS generation and modulation of DNA repair processes in potentiation of nucleoside analogue-mediated DNA damage and lethality in leukemia. Moreover, they show for the first time the link between HDACI-mediated ROS generation and the recently reported DNA damage observed in cells exposed to these agents. [Mol Cancer Ther 2008;7(9):3285–97]


Leukemia | 2004

Potent antileukemic interactions between flavopiridol and TRAIL/Apo2L involve flavopiridol-mediated XIAP downregulation.

Roberto R. Rosato; Yun Dai; Jorge A. Almenara; Sonia C. Maggio; S. T. Grant

Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L), were examined in human leukemia cells (U937 and Jurkat). Coexposure of cells to marginally toxic concentrations of TRAIL and FP (24 h) synergistically increased mitochondrial injury (eg, cytochrome c, AIF, Smac/DIABLO release), cytoplasmic depletion of Bax, activation of Bid as well as caspase-8 and -3, PARP cleavage, and apoptosis. Coadministration of TRAIL markedly increased FP-induced apoptosis in leukemic cells ectopically expressing Bcl-2, Bcl-xL, or a phosphorylation loop-deleted form of Bcl-2 (ΔBcl-2), whereas lethality was substantially attenuated in cells ectopically expressing CrmA, dominant-negative-FADD, or dominant-negative-caspase-8. TRAIL/FP induced no discernible changes in FLIP, DR4, DR5, Mcl-1, or survivin expression, modest declines in levels of DcR2 and c-IAP, but resulted in the marked transcriptional downregulation of XIAP. Moreover, cells stably expressing an XIAP-antisense construct exhibited a pronounced increase in TRAIL sensitivity comparable to degrees of apoptosis achieved with TRAIL/FP. Conversely, enforced XIAP expression significantly attenuated caspase activation and TRAIL/FP lethality. Together, these findings suggest that simultaneous activation of the intrinsic and extrinsic apoptotic pathways by TRAIL and FP synergistically induces apoptosis in human leukemia cells through a mechanism that involves FP-mediated XIAP downregulation.


Antimicrobial Agents and Chemotherapy | 2012

VraSR Two-Component Regulatory System Contributes to mprF-Mediated Decreased Susceptibility to Daptomycin in In Vivo-Selected Clinical Strains of Methicillin-Resistant Staphylococcus aureus

Shrenik Mehta; Arabela Cuirolo; Konrad B. Plata; Sarah Riosa; Jared Silverman; Aileen Rubio; Roberto R. Rosato; Adriana E. Rosato

ABSTRACT Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR. Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF, vraSR contributes to DAP resistance in the present group of clinical strains.


Journal of Biological Chemistry | 2010

Histone Deacetylase Inhibitors Activate NF-κB in Human Leukemia Cells through an ATM/NEMO-related Pathway

Roberto R. Rosato; Sarah Kolla; Stefanie K. Hock; Jorge A. Almenara; Ankita Patel; Sanjay Amin; Peter Atadja; Paul B. Fisher; Paul Dent; Steven Grant

Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.

Collaboration


Dive into the Roberto R. Rosato's collaboration.

Top Co-Authors

Avatar

Steven Grant

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jorge A. Almenara

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Adriana E. Rosato

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Bhuvanesh Dave

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Jenny C. Chang

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul Dent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Dong Soon Choi

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia C. Maggio

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Wei Qian

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge