Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge E. Osorio is active.

Publication


Featured researches published by Jorge E. Osorio.


Lancet Infectious Diseases | 2014

Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study

Jorge E. Osorio; Iván Darío Vélez; Cynthia A. Thomson; Liliana Lopez; Alejandra Jiménez; Aurelia Haller; Shawn Silengo; Jaclyn Scott; Karen L. Boroughs; Janae L. Stovall; Betty E. Luy; John Arguello; Mark E Beatty; Joseph D. Santangelo; Gilad Gordon; Claire Y.-H. Huang; Dan T. Stinchcomb

BACKGROUND Dengue virus is the most serious mosquito-borne viral threat to public health and no vaccines or antiviral therapies are approved for dengue fever. The tetravalent DENVax vaccine contains a molecularly characterised live attenuated dengue serotype-2 virus (DENVax-2) and three recombinant vaccine viruses expressing the prM and E structural genes for serotypes 1, 3, and 4 in the DENVax-2 genetic backbone. We aimed to assess the safety and immunogenicity of tetravalent DENVax formulations. METHODS We undertook a randomised, double-blind, phase 1, dose-escalation trial between Oct 11, 2011, and Nov 9, 2011, in the Rionegro, Antioquia, Colombia. The first cohort of participants (aged 18-45 years) were randomly assigned centrally, via block randomisation, to receive a low-dose formulation of DENvax, or placebo, by either subcutaneous or intradermal administration. After a safety assessment, participants were randomly assigned to receive a high-dose DENVax formulation, or placebo, by subcutaneous or intradermal administration. Group assignment was not masked from study pharmacists, but allocation was concealed from participants, nurses, and investigators. Primary endpoints were frequency and severity of injection-site and systemic reactions within 28 days of each vaccination. Secondary endpoints were the immunogenicity of DENVax against all four dengue virus serotypes, and the viraemia due to each of the four vaccine components after immunisation. Analysis was by intention to treat for safety and per protocol for immunogenicity. Because of the small sample size, no detailed comparison of adverse event rates were warranted. The trial is registered with ClinicalTrials.gov, number NCT01224639. FINDINGS We randomly assigned 96 patients to one of the four study groups: 40 participants (42%) received low-dose vaccine and eight participants (8%) received placebo in the low-dose groups; 39 participants (41%) received high-dose vaccine, with nine (9%) participants assigned to receive placebo. Both formulations were well tolerated with mostly mild and transient local or systemic reactions. No clinically meaningful differences were recorded in the overall incidence of local and systemic adverse events between patients in the vaccine and placebo groups; 68 (86%) of 79 participants in the vaccine groups had solicited systemic adverse events compared with 13 (76%) of 17 of those in the placebo groups. By contrast, 67 participants (85%) in the vaccine group had local solicited reactions compared with five (29%) participants in the placebo group. Immunisation with either high-dose or low-dose DENVax formulations induced neutralising antibody responses to all four dengue virus serotypes; 30 days after the second dose, 47 (62%) of 76 participants given vaccine seroconverted to all four serotypes and 73 (96%) participants seroconverted to three or more dengue viruses. Infectious DENVax viruses were detected in only ten (25%) of 40 participants in the low-dose group and 13 (33%) of 39 participants in the high-dose group. INTERPRETATION Our findings emphasise the acceptable tolerability and immunogenicity of the tetravalent DENVax formulations in healthy, flavivirus-naive adults. Further clinical testing of DENVax in different age groups and in dengue-endemic areas is warranted. FUNDING Takeda Vaccines.


Comparative Immunology Microbiology and Infectious Diseases | 2003

Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis

Hansi J. Dean; Deborah H. Fuller; Jorge E. Osorio

The epidermis of the skin is both a sensitive immune organ and a practical target site for vaccine administration. However, administration of vaccines into the epidermis is difficult to achieve using conventional vaccine delivery methods employing a needle and syringe. A needle-free vaccine delivery system has been developed that efficiently delivers powdered or particulate DNA and protein vaccines into the epidermal tissue. The delivery system can be used to directly transfect antigen presenting cells (APCs) by formulating DNA or protein vaccines onto gold particles (particle-mediated immunization). Antigen can be directly presented to the immune system by the transfected APCs. Antigen can also be expressed and secreted by transfected keratinocytes and picked up by resident APCs through the exogenous antigen presentation pathway. Alternatively, protein antigens can be formulated into a powder and delivered into the extracellular environment where they are picked up by APCs (epidermal powder immunization). Using any of these formulations, epidermal immunization offers the advantage of efficiently delivering vaccines into the APC-rich epidermis. Recent studies demonstrate that epidermal vaccine delivery induces humoral, cellular, and protective immune responses against infectious diseases in both laboratory animals and man.


The Journal of Infectious Diseases | 2015

Safety and Immunogenicity of a Live Attenuated Tetravalent Dengue Vaccine Candidate in Flavivirus-Naive Adults: A Randomized, Double-Blinded Phase 1 Clinical Trial

Sarah L. George; Mimi A. Wong; Tina Dube; Karen L. Boroughs; Janae L. Stovall; Betty E. Luy; Aurelia A. Haller; Jorge E. Osorio; Linda M. Eggemeyer; Sharon Irby-Moore; Sharon E. Frey; Claire Y.-H. Huang; Dan T. Stinchcomb

BACKGROUND Dengue viruses (DENVs) infect >300 million people annually, causing 96 million cases of dengue disease and 22 000 deaths [1]. A safe vaccine that protects against DENV disease is a global health priority [2]. METHODS We enrolled 72 flavivirus-naive healthy adults in a phase 1 double-blinded, randomized, placebo-controlled dose-escalation trial (low and high dose) of a live attenuated recombinant tetravalent dengue vaccine candidate (TDV) given in 2 doses 90 days apart. Volunteers were followed for safety, vaccine component viremia, and development of neutralizing antibodies to the 4 DENV serotypes. RESULTS The majority of adverse events were mild, with no vaccine-related serious adverse events. Vaccinees reported injection site pain (52% vs 17%) and erythema (73% vs 25%) more frequently than placebo recipients. Low levels of TDV-serotype 2 (TDV-2), TDV-3, and TDV-4 viremia were observed after the first but not second administration of vaccine. Overall seroconversion rates and geometric mean neutralization titers after 2 doses were 84.2% and 54.1, respectively, for DENV serotype 1 (DENV-1); 92.1% and 292.8, respectively, for DENV-2; 86.8% and 32.3, respectively, for DENV-3; and 71.1% and 15.0, respectively, for DENV-4. More than 90.0% of high-dose recipients had trivalent or broader responses. CONCLUSIONS TDV was generally well tolerated, induced trivalent or broader neutralizing antibodies to DENV in most flavivirus-naive vaccinees, and is undergoing further development. CLINICAL TRIALS REGISTRATION NCT01110551.


Vaccine | 2015

Development of a recombinant, chimeric tetravalent dengue vaccine candidate

Jorge E. Osorio; Charalambos D. Partidos; Derek Wallace; Dan T. Stinchcomb

Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.


The Journal of Infectious Diseases | 2015

CD8+ T-cell Responses in Flavivirus-Naive Individuals Following Immunization with a Live-Attenuated Tetravalent Dengue Vaccine Candidate

Haiyan Chu; Sarah L. George; Dan T. Stinchcomb; Jorge E. Osorio; Charalambos D. Partidos

We are developing a live-attenuated tetravalent dengue vaccine (TDV) candidate based on an attenuated dengue 2 virus (TDV-2) and 3 chimeric viruses containing the premembrane and envelope genes of dengue viruses (DENVs) -1, -3, and -4 expressed in the context of the attenuated TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively). In this study, we analyzed and characterized the CD8(+) T-cell response in flavivirus-naive human volunteers vaccinated with 2 doses of TDV 90 days apart via the subcutaneous or intradermal routes. Using peptide arrays and intracellular cytokine staining, we demonstrated that TDV elicits CD8(+) T cells targeting the nonstructural NS1, NS3, and NS5 proteins of TDV-2. The cells were characterized by the production of interferon-γ, tumor necrosis factor-α, and to a lesser extent interleukin-2. Responses were highest on day 90 after the first dose and were still detectable on 180 days after the second dose. In addition, CD8(+) T cells were multifunctional, producing ≥2 cytokines simultaneously, and cross-reactive to NS proteins of the other 3 DENV serotypes. Overall, these findings describe the capacity of our candidate dengue vaccine to elicit cellular immune responses and support the further evaluation of T-cell responses in samples from future TDV clinical trials.


Vaccine | 2014

Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice

Jeremy Fuchs; Haiyan Chu; Peter O'Day; Richard B. Pyles; Nigel Bourne; Subash C. Das; Gregg N. Milligan; Alan D. T. Barrett; Charalambos D. Partidos; Jorge E. Osorio

Dengue (DEN) is the most important mosquito-borne viral disease, with a major impact on global health and economics, caused by four serologically and distinct viruses termed DENV-1 to DENV-4. Currently, there is no licensed vaccine to prevent DEN. We have developed a live attenuated tetravalent DENV vaccine candidate (TDV) (formally known as DENVax) that has shown promise in preclinical and clinical studies and elicits neutralizing antibody responses to all four DENVs. As these responses are lowest to DENV-4 we have used the AG129 mouse model to investigate the immunogenicity of monovalent TDV-4 or tetravalent TDV vaccines, and their efficacy against lethal DENV-4 challenge. Since the common backbone of TDV is based on an attenuated DENV-2 strain (TDV-2) we also tested the efficacy of TDV-2 against DENV-4 challenge. Single doses of the tetravalent or monovalent vaccines elicited neutralizing antibodies, anti-NS1 antibodies, and cellular responses to both envelope and nonstructural proteins. All vaccinated animals were protected against challenge at 60 days post-immunization, whereas all control animals died. Investigation of DENV-4 viremias post-challenge showed that only the control animals had high viremias on day 3 post-challenge, whereas vaccinated mice had no detectable viremia. Overall, these data highlight the excellent immunogenicity and efficacy profile of our candidate dengue vaccine in AG129 mice.


Frontiers in Immunology | 2014

A Rapid Immunization Strategy with a Live-Attenuated Tetravalent Dengue Vaccine Elicits Protective Neutralizing Antibody Responses in Non-Human Primates

Yuping Ambuel; Ginger R. Young; Joseph N. Brewoo; Joanna Paykel; Kim L. Weisgrau; Eva G. Rakasz; Aurelia Haller; Michael Royals; Claire Y.-H. Huang; Saverio Capuano; Dan T. Stinchcomb; Charalambos D. Partidos; Jorge E. Osorio

Dengue viruses (DENVs) cause approximately 390 million cases of DENV infections annually and over 3 billion people worldwide are at risk of infection. No dengue vaccine is currently available nor is there an antiviral therapy for DENV infections. We have developed a tetravalent live-attenuated DENV vaccine tetravalent dengue vaccine (TDV) that consists of a molecularly characterized attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the pre-membrane and envelope genes of DENV-1, -3, and -4 expressed in the context of the TDV-2 genome. To impact dengue vaccine delivery in endemic areas and immunize travelers, a simple and rapid immunization strategy (RIS) is preferred. We investigated RIS consisting of two full vaccine doses being administered subcutaneously or intradermally on the initial vaccination visit (day 0) at two different anatomical locations with a needle-free disposable syringe jet injection delivery devices (PharmaJet) in non-human primates. This vaccination strategy resulted in efficient priming and induction of neutralizing antibody responses to all four DENV serotypes comparable to those elicited by the traditional prime and boost (2 months later) vaccination schedule. In addition, the vaccine induced CD4+ and CD8+ T cells producing IFN-γ, IL-2, and TNF-α, and targeting the DENV-2 NS1, NS3, and NS5 proteins. Moreover, vaccine-specific T cells were cross-reactive with the non-structural NS3 and NS5 proteins of DENV-4. When animals were challenged with DENV-2 they were protected with no detectable viremia, and exhibited sterilizing immunity (no increase of neutralizing titers post-challenge). RIS could decrease vaccination visits and provide quick immune response to all four DENV serotypes. This strategy could increase vaccination compliance and would be especially advantageous for travelers into endemic areas.


PLOS Neglected Tropical Diseases | 2016

Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates.

Fiona R. Strouts; Stephen J. Popper; Charalambos D. Partidos; Dan T. Stinchcomb; Jorge E. Osorio; David A. Relman

Background The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. Methodology/Principal Findings In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. Conclusions/Significance These results suggest that early transcriptional responses may be predictive of development of adaptive immunity to TDV vaccination in cynomolgus macaques, and will inform studies of human responses to dengue vaccines.


The Journal of Infectious Diseases | 2018

Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate

Jesica Swanstrom; Sandra Henein; Jessica A. Plante; Boyd Yount; Douglas G. Widman; Emily N. Gallichotte; Hansi Dean; Jorge E. Osorio; Charalambos D. Partidos; Aravinda M. de Silva; Ralph S. Baric

Background Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. Methods We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. Results Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. Conclusion Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity.


Archive | 2008

Methods and compositions for live attenuated viruses

Dan T. Stinchcomb; Jorge E. Osorio; O'neil Wiggan

Collaboration


Dive into the Jorge E. Osorio's collaboration.

Top Co-Authors

Avatar

Dan T. Stinchcomb

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Charalambos D. Partidos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Joseph N. Brewoo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Joseph N. Brewoo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Powell

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Claire Y.-H. Huang

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

O'neil Wiggan

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Haiyan Chu

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Jill A. Livengood

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge