Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge G. Peralta is active.

Publication


Featured researches published by Jorge G. Peralta.


American Journal of Physiology-cell Physiology | 1998

Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart

Juan José Poderoso; Jorge G. Peralta; Constanza Lisdero; Maria Cecilia Carreras; Marcelo Radisic; Francisco Schöpfer; Enrique Cadenas; Alberto Boveris

Isolated rat heart perfused with 1.5-7.5 μM NO solutions or bradykinin, which activates endothelial NO synthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 μM NO, n = 18, P < 0.05) and to 1.2 ± 0.1 μM O2 ⋅ min-1 ⋅ g tissue-1 (10 μM bradykinin, n = 10, P < 0.05). Perfused NO concentrations correlated with an induced release of hydrogen peroxide (H2O2) in the effluent ( r = 0.99, P < 0.01). NO markedly decreased the O2 uptake of isolated rat heart mitochondria (50% inhibition at 0.4 μM NO, r = 0.99, P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b and cytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound to myoglobin; this fact is consistent with NO steady-state concentrations of 0.1-0.3 μM, which affect mitochondria. In the intact heart, finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected by H2O2), which in turn contributes to the physiological clearance of NO through peroxynitrite formation.Isolated rat heart perfused with 1.5-7.5 microM NO solutions or bradykinin, which activates endothelial NO synthase, showed a dose-dependent decrease in myocardial O2 uptake from 3.2 +/- 0.3 to 1.6 +/- 0.1 (7.5 microM NO, n = 18, P < 0.05) and to 1.2 +/- 0.1 microM O2.min-1.g tissue-1 (10 microM bradykinin, n = 10, P < 0.05). Perfused NO concentrations correlated with an induced release of hydrogen peroxide (H2O2) in the effluent (r = 0.99, P < 0.01). NO markedly decreased the O2 uptake of isolated rat heart mitochondria (50% inhibition at 0.4 microM NO, r = 0.99, P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b and cytochrome c, which accounts for the effects in O2 uptake and H2O2 release. Most NO was bound to myoglobin; this fact is consistent with NO steady-state concentrations of 0.1-0.3 microM, which affect mitochondria. In the intact heart, finely adjusted NO concentrations regulate mitochondrial O2 uptake and superoxide anion production (reflected by H2O2), which in turn contributes to the physiological clearance of NO through peroxynitrite formation.


Free Radical Biology and Medicine | 1994

Oxidative stress in muscle and liver of rats with septic syndrome

Susana Llesuy; Pablo Evelson; Beatriz Gonzalez-Flecha; Jorge G. Peralta; Maria Cecilia Carreras; Juan José Poderoso; Alberto Boveris

Sepsis, as infection associated to systemic manifestations, was produced in rats by cecal ligation and double perforation. Sham-operated rats were used as controls. The spontaneous chemiluminescence of rat adductor muscle and liver were measured at 6, 12, 24, and 30 h after the surgical procedure. Muscle chemiluminescence showed a maximal increase of about twofold (control emission 10 +/- 1 cps/cm2) after 6-12 h of sepsis, while liver chemiluminescence increased by about 80% (control emission: 11 +/- 1 cps/cm2) after 24 h of sepsis. The activities of muscle antioxidant enzymes were found maximally diminished after 12 h of sepsis: 46% decrease for Mn-superoxide dismutase, 83% decrease for catalase, and 55% decrease for glutathione peroxidase. In liver, only catalase activity showed a 52% decrease after 24 h of sepsis. State 3 oxygen uptake of muscle mitochondria with either malate-glutamate or succinate as substrates was 40% decreased after 12 h of sepsis in both cases. State 4 oxygen uptake of muscle mitochondria was not affected. The rate of H2O2 production of muscle mitochondria after 12 h of sepsis with either malate-glutamate or succinate as substrates was increased about 2.5 times but was not affected when assayed in the presence of as rotenone and antimycin. The oxygen uptake of liver mitochondria isolated from septic rats did not show differences as compared with those of control rats after 6 to 24 h of sepsis. Oxidative stress appears to occur in skeletal muscle early at the onset of the septic syndrome, with inhibition of active mitochondrial respiration and inactivation of antioxidant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Biological Chemistry | 2006

Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase.

Maria Clara Franco; Valeria G. Antico Arciuch; Jorge G. Peralta; Soledad Galli; Damián M. Levisman; Lidia M. López; Leonardo Romorini; Juan José Poderoso; Maria Cecilia Carreras

Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-α (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate. At low 3,3′,5-triiodo-l-thyronine levels, nNOS mRNA increased by 3-fold, protein expression by one-fold, and nNOS was selectively translocated to mitochondria without changes in other isoforms. In contrast, under thyroid hormone administration, mRNA level did not change and nNOS remained predominantly localized in cytosol. In hypothyroidism, nNOS translocation resulted in enhanced mitochondrial nitric-oxide synthase activity with low O2 uptake. In this context, NO utilization increased active O2 species and peroxynitrite yields and tyrosine nitration of complex I proteins that reduced complex activity. Hypothyroidism was also associated to high phospho-p38 mitogen-activated protein kinase and decreased phospho-extracellular signal-regulated kinase 1/2 and cyclin D1 levels. Similarly to thyroid hormones, but without changing thyroid status, nitric-oxide synthase inhibitor Nω-nitro-l-arginine methyl ester increased basal metabolic rate, prevented mitochondrial nitration and complex I derangement, and turned mitogen-activated protein kinase signaling and cyclin D1 expression back to control pattern. We surmise that nNOS spatial confinement in mitochondria is a significant downstream effector of thyroid hormone and hypothyroid phenotype.


PLOS ONE | 2008

Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: implications for the metabolic syndrome.

Paola Finocchietto; Fernando Barreyro; Silvia Holod; Jorge G. Peralta; Maria Clara Franco; Carlos F. Mendez; Daniela Converso; Alvaro G. Estévez; Maria Cecilia Carreras; Juan José Poderoso

Background In the metabolic syndrome with hyperinsulinemia, mitochondrial inhibition facilitates muscle fat and glycogen accumulation and accelerates its progression. In the last decade, nitric oxide (NO) emerged as a typical mitochondrial modulator by reversibly inhibiting citochrome oxidase and oxygen utilization. We wondered whether insulin-operated signaling pathways modulate mitochondrial respiration via NO, to alternatively release complete glucose oxidation to CO2 and H2O or to drive glucose storage to glycogen. Methodology/Principal Findings We illustrate here that NO produced by translocated nNOS (mtNOS) is the insulin-signaling molecule that controls mitochondrial oxygen utilization. We evoke a hyperinsulinemic-normoglycemic non-invasive clamp by subcutaneously injecting adult male rats with long-lasting human insulin glargine that remains stable in plasma by several hours. At a precise concentration, insulin increased phospho-Akt2 that translocates to mitochondria and determines in situ phosphorylation and substantial cooperative mtNOS activation (+4–8 fold, P<.05), high NO, and a lowering of mitochondrial oxygen uptake and resting metabolic rate (−25 to −60%, P<.05). Comparing in vivo insulin metabolic effects on gastrocnemius muscles by direct electroporation of siRNA nNOS or empty vector in the two legs of the same animal, confirmed that in the silenced muscles disrupted mtNOS allows higher oxygen uptake and complete (U-14C)-glucose utilization respect to normal mtNOS in the vector-treated ones (respectively 37±3 vs 10±1 µmolO2/h.g tissue and 13±1 vs 7.2±1 µmol 3H2O/h.g tissue, P<.05), which reciprocally restricted glycogen-synthesis by a half. Conclusions/Significance These evidences show that after energy replenishment, insulin depresses mitochondrial respiration in skeletal muscle via NO which permits substrates to be deposited as macromolecules; at discrete hyperinsulinemia, persistent mtNOS activation could contribute to mitochondrial dysfunction with insulin resistance and obesity and therefore, to the progression of the metabolic syndrome.


Antioxidants & Redox Signaling | 2011

Defective Leptin–AMP-Dependent Kinase Pathway Induces Nitric Oxide Release and Contributes to Mitochondrial Dysfunction and Obesity in ob/ob Mice

Paola Finocchietto; Silvia Holod; Fernando Barreyro; Jorge G. Peralta; Yael Alippe; Andrés Giovambattista; Maria Cecilia Carreras; Juan José Poderoso

AIMS Obesity arises on defective neuroendocrine pathways that increase energy intake and reduce mitochondrial metabolism. In the metabolic syndrome, mitochondrial dysfunction accomplishes defects in fatty acid oxidation and reciprocal increase in triglyceride content with insulin resistance and hyperglycemia. Mitochondrial inhibition is attributed to reduced biogenesis, excessive fission, and low adipokine-AMP-activated protein kinase (AMPK) level, but lateness of the respiratory chain contributes to perturbations. Considering that nitric oxide (NO) binds cytochrome oxidase and inhibits respiration, we explored NO as a direct effector of mitochondrial dysfunction in the leptin-deficient ob/ob mice. RESULTS A remarkable three- to fourfold increase in neuronal nitric oxide synthase (nNOS) expression and activity was detected by western blot, citrulline assay, electronic and confocal microscopy, flow cytometry, and NO electrode sensor in mitochondria from ob/ob mice. High NO reduced oxygen uptake in ob/ob mitochondria by inhibition of complex IV and nitration of complex I. Low metabolic status restricted β-oxidation in obese mitochondria and displaced acetyl-CoA to fat synthesis; instead, small interference RNA nNOS caused a phenotype change with fat reduction in ob/ob adipocytes. INNOVATION We evidenced that leptin increases mitochondrial respiration and fat utilization by potentially inhibiting NO release. Accordingly, leptin administration to ob/ob mice prevented nNOS overexpression and mitochondrial dysfunction in vivo and rescued leptin-dependent effects by matrix NO reduction, whereas leptin-Ob-Rb disruption increased the formation of mitochondrial NO in control adipocytes. We demonstrated that in ob/ob, hypoleptinemia is associated with critically low mitochondrial p-AMPK and that, oppositely to p-Akt2, p-AMPK is a negative modulator of nNOS. CONCLUSION Thereby, defective leptin-AMPK pathway links mitochondrial NO to obesity with complex I syndrome and dysfunctional mitochondria.


Free Radical Research | 2014

Abnormal mitochondrial fusion–fission balance contributes to the progression of experimental sepsis

Analía Silvia González; M. E. Elguero; Paola Finocchietto; Silvia Holod; L. Romorini; S. G. Miriuka; Jorge G. Peralta; Juan José Poderoso; Maria Cecilia Carreras

Abstract Sepsis-associated multiple organ failure is a major cause of mortality characterized by a massive increase of reactive oxygen and nitrogen species (ROS/RNS) and mitochondrial dysfunction. Despite intensive research, determining events in the progression or reversal of the disease are incompletely understood. Herein, we studied two prototype sepsis models: endotoxemia and cecal ligation and puncture (CLP)—which showed very different lethality rates (2.5% and 67%, respectively)—, evaluated iNOS, ROS and respiratory chain activity, and investigated mitochondrial biogenesis and dynamics, as possible processes involved in sepsis outcome. Endotoxemia and CLP showed different iNOS, ROS/RNS, and complex activities time-courses. Moreover, these alterations reverted after 24-h endotoxemia but not after CLP. Mitochondrial biogenesis was not elicited during the first 24 h in either model but instead, 50% mtDNA depletion was observed. Mitochondrial fusion and fission were evaluated using real-time PCR of mitofusin-2 (Mfn2), dynamin-related protein-1 (Drp1), and using electron microscopy. During endotoxemia, we observed a decrease of Mfn2-mRNA levels at 4–6 h, and an increase of mitochondrial fragmentation at 6 h. These parameters reverted at 24 h. In contrast, CLP showed not only decreased Mfn2-mRNA levels at 12–18 h but also increased Drp1-mRNA levels at 4 h, and enhanced and sustained mitochondrial fragmentation. The in vivo pretreatment with mdivi-1 (Drp1 inhibitor) significantly attenuated mitochondrial dysfunction and apoptosis in CLP. Therefore, abnormal fusion-to-fission balance, probably evoked by ROS/RNS secondary to iNOS induction, contributes to the progression of sepsis. Pharmacological targeting of Drp1 may be a potential novel therapeutic tool for sepsis.


The International Journal of Biochemistry & Cell Biology | 2016

Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice.

Juana P. Sánchez-Villamil; Verónica D’Annunzio; Paola Finocchietto; Silvia Holod; Inés Rebagliati; Hernán Pérez; Jorge G. Peralta; Ricardo J. Gelpi; Juan José Poderoso; Maria Cecilia Carreras

Sepsis-induced myocardial dysfunction is associated with increased oxidative stress and mitochondrial dysfunction. Current evidence suggests a protective role of thioredoxin-1 (Trx1) in the pathogenesis of cardiovascular diseases. However, it is unknown yet a putative role of Trx1 in sepsis-induced myocardial dysfunction, in which oxidative stress is an underlying cause. Transgenic male mice with Trx1 cardiac-specific overexpression (Trx1-Tg) and its wild-type control (wt) were subjected to cecal ligation and puncture or sham surgery. After 6, 18, and 24h, cardiac contractility, antioxidant enzymes, protein oxidation, and mitochondrial function were evaluated. Trx1 overexpression improved the average life expectancy (Trx1-Tg: 36, wt: 28h; p=0.0204). Sepsis induced a decrease in left ventricular developed pressure in both groups, while the contractile reserve, estimated as the response to β-adrenergic stimulus, was higher in Trx1-Tg in relation to wt, after 6h of the procedure. Trx1 overexpression attenuated complex I inhibition, protein carbonylation, and loss of membrane potential, and preserved Mn superoxide dismutase activity at 24h. Ultrastructural alterations in mitochondrial cristae were accompanied by reduced optic atrophy 1 (OPA1) fusion protein, and activation of dynamin-related protein 1 (Drp1) (fission protein) in wt mice at 24h, suggesting mitochondrial fusion/fission imbalance. PGC-1α gene expression showed a 2.5-fold increase in Trx1-Tg at 24h, suggesting mitochondrial biogenesis induction. Autophagy, demonstrated by electron microscopy and increased LC3-II/LC3-I ratio, was observed earlier in Trx1-Tg. In conclusion, Trx1 overexpression extends antioxidant protection, attenuates mitochondrial damage, and activates mitochondrial turnover (mitophagy and biogenesis), preserves contractile reserve and prolongs survival during sepsis.


International Journal of Pancreatology | 1996

Oxidative stress in rodent closed duodenal loop pancreatitis

Jorge G. Peralta; Claudia Reides; Susana García; Susana Llesuy; Griselda Pargament; Maria Cecilia Carreras; Sergio D. Catz; Juan José Poderoso

SummaryConclusionsProduction of excited oxygen species is earlier in the liver than in the pancreas and could contribute to damage in a reflux model. Treatment with SOD could attenuate 59% light emission in pancreas, but did not modify serum enzyme levels or pancreatic edema, resulting as an insufficient isolated therapy. Unexpectedly, it was found an increased plasma antioxidant capacity that was related to total bilirubin levels, and declined at late stages probably denoting other circulating antioxidant consumption.BackgroundOxidative stress has been shown to play a role in different models of acute pancreatitis, although it has not been studied in the severe necrohemorrhagic model produced by closed duodenal loop pancreatitis.MethodsWe studied Sprague Dawley female rats in two groups: a closed duodenal loop pancreatitis group and a control, sham-operated group. In order to evidence the oxygen excited species production,in situ spontaneous chemiluminescence from living and naturally perfused pancreas and liver was measured at 0, 0.5, 1.5, 3, 6, 12, and 24 h after the duodenal ligature. Blood pancreatic amylase and aminotransferases levels were determined as expression of tissue damage in pancreas and liver. At the same time, plasma antioxidant capacity was measured by the peroxyl radical trapping capability of plasma samples compared to that of Trolox (synthetic analog of vitamin E), and results are expressed as Trolox equivalence. Bovine superoxide dismutase (SOD) was administered to attenuate oxygen free radicals activity at the beginning of the peroxidation chain and also as a therapeutic tool.ResultsThe experimental procedure induced a severe pancreatitis, as evidenced by pancreatic enzymes that rose markedly in the early hours of disease and remained heightened throughout the experiment. The results show early light emission from the liver at 3 h and peak levels at 12 h, whereas in the pancreas, luminescence increased at 6 h and doubled later at 12 h, both returning to control levels at 24 h.


The Journal of Clinical Pharmacology | 1983

Captopril versus hydralazine in primary pulmonary hypertension.

Juan José Poderoso; C. A Biancolini; Carlos G. del Bosco; Hugo N. Catalano; Jorge G. Peralta; Daniel Goldenberg; Suárez Ld

Abstract: Captopril was tested as the treatment for a patient with primary pulmonary hypertension (PPH) and its effects were compared with those of hydralazine. Captopril induced a rise in pulmonary pressures and in intrapulmonary shunt; hydralazine lowered pulmonary resistances and increased paO2 and blood O2 transport. Prospective studies in PPH treated with captopril are recommended and evaluation of all drugs not only by hemodynamic but also respiratory and O2 transport measurements.


Biochemical and Biophysical Research Communications | 2002

β-Adrenergic stimulation controls the expression of a thioesterase specific for very-long-chain fatty acids in perfused hearts

Isabel Neuman; Paula Maloberti; Constanza Lisdero; Cecilia Colonna; Jorge G. Peralta; Juan José Poderoso; Ernesto J. Podestá

Arachidonic acid is not freely stored in the cells. A number of different pathways for the mobilization of this compound have been proposed, including a novel mechanism that involves the release of arachidonic acid from arachidonoyl-CoA by a thioesterase with substrate specificity for very-long-chain fatty acids. In rat heart, the acyl-CoA thioesterase activity can be regulated by a mechanism that involves beta-adrenoceptors. In this paper we demonstrate that beta-adrenergic agonists also regulate the acyl-CoA thioesterase mRNA levels. Isoproterenol (10(-7)M)-a concentration known to exert physiological responses-increases in a time-dependent manner the acyl-CoA thioesterase mRNA levels, an effect blocked by a specific beta-adrenoceptor antagonist. In addition, our results show that cAMP is involved in this process. The acyl-CoA thioesterase mRNA levels are also increased by fasting, but not by di(2-ethylhexyl)phthalate, a peroxisome proliferator. These results may suggest the existence of a beta-adrenoceptor-activated regulatory pathway for arachidonic acid release in cardiac tissue.

Collaboration


Dive into the Jorge G. Peralta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inés Rebagliati

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Holod

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Boveris

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Constanza Lisdero

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge