Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Schöpfer is active.

Publication


Featured researches published by Francisco Schöpfer.


Journal of Biological Chemistry | 1999

The Regulation of Mitochondrial Oxygen Uptake by Redox Reactions Involving Nitric Oxide and Ubiquinol

Juan José Poderoso; Constanza Lisdero; Francisco Schöpfer; Natalia A. Riobo; Maria Cecilia Carreras; Enrique Cadenas; Alberto Boveris

The reversible inhibitory effects of nitric oxide (·NO) on mitochondrial cytochrome oxidase and O2uptake are dependent on intramitochondrial ·NO utilization. This study was aimed at establishing the mitochondrial pathways for ·NO utilization that regulate O⨪2 generation via reductive and oxidative reactions involving ubiquinol oxidation and peroxynitrite (ONOO–) formation. For this purpose, experimental models consisting of intact mitochondria, ubiquinone-depleted/reconstituted submitochondrial particles, and ONOO–-supplemented mitochondrial membranes were used. The results obtained from these experimental approaches strongly suggest the occurrence of independent pathways for ·NO utilization in mitochondria, which effectively compete with the binding of ·NO to cytochrome oxidase, thereby releasing this inhibition and restoring O2 uptake. The pathways for ·NO utilization are discussed in terms of the steady-state levels of ·NO and O⨪2 and estimated as a function of O2 tension. These calculations indicate that mitochondrial ·NO decays primarily by pathways involving ONOO– formation and ubiquinol oxidation and, secondarily, by reversible binding to cytochrome oxidase.


Free Radical Biology and Medicine | 1999

The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance

Juan José Poderoso; Maria Cecilia Carreras; Francisco Schöpfer; Constanza Lisdero; Natalia A. Riobo; Cecilia Giulivi; A. Boveris; Alberto Boveris; Enrique Cadenas

The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane.


American Journal of Physiology-cell Physiology | 1998

Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart

Juan José Poderoso; Jorge G. Peralta; Constanza Lisdero; Maria Cecilia Carreras; Marcelo Radisic; Francisco Schöpfer; Enrique Cadenas; Alberto Boveris

Isolated rat heart perfused with 1.5-7.5 μM NO solutions or bradykinin, which activates endothelial NO synthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 μM NO, n = 18, P < 0.05) and to 1.2 ± 0.1 μM O2 ⋅ min-1 ⋅ g tissue-1 (10 μM bradykinin, n = 10, P < 0.05). Perfused NO concentrations correlated with an induced release of hydrogen peroxide (H2O2) in the effluent ( r = 0.99, P < 0.01). NO markedly decreased the O2 uptake of isolated rat heart mitochondria (50% inhibition at 0.4 μM NO, r = 0.99, P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b and cytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound to myoglobin; this fact is consistent with NO steady-state concentrations of 0.1-0.3 μM, which affect mitochondria. In the intact heart, finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected by H2O2), which in turn contributes to the physiological clearance of NO through peroxynitrite formation.Isolated rat heart perfused with 1.5-7.5 microM NO solutions or bradykinin, which activates endothelial NO synthase, showed a dose-dependent decrease in myocardial O2 uptake from 3.2 +/- 0.3 to 1.6 +/- 0.1 (7.5 microM NO, n = 18, P < 0.05) and to 1.2 +/- 0.1 microM O2.min-1.g tissue-1 (10 microM bradykinin, n = 10, P < 0.05). Perfused NO concentrations correlated with an induced release of hydrogen peroxide (H2O2) in the effluent (r = 0.99, P < 0.01). NO markedly decreased the O2 uptake of isolated rat heart mitochondria (50% inhibition at 0.4 microM NO, r = 0.99, P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b and cytochrome c, which accounts for the effects in O2 uptake and H2O2 release. Most NO was bound to myoglobin; this fact is consistent with NO steady-state concentrations of 0.1-0.3 microM, which affect mitochondria. In the intact heart, finely adjusted NO concentrations regulate mitochondrial O2 uptake and superoxide anion production (reflected by H2O2), which in turn contributes to the physiological clearance of NO through peroxynitrite formation.


Free Radical Biology and Medicine | 2000

Reactions of peroxynitrite in the mitochondrial matrix

Laura B. Valdez; Silvia Alvarez; Silvia Lores Arnaiz; Francisco Schöpfer; Maria Cecilia Carreras; Juan José Poderoso; Alberto Boveris

Superoxide radical (O2-) and nitric oxide (NO) produced at the mitochondrial inner membrane react to form peroxynitrite (ONOO-) in the mitochondrial matrix. Intramitochondrial ONOO- effectively reacts with a few biomolecules according to reaction constants and intramitochondrial concentrations. The second-order reaction constants (in M(-1) s(-1)) of ONOO- with NADH (233 +/- 27), ubiquinol-0 (485 +/- 54) and GSH (183 +/- 12) were determined fluorometrically by a simple competition assay of product formation. The oxidation of the components of the mitochondrial matrix by ONOO- was also followed in the presence of CO2, to assess the reactivity of the nitrosoperoxocarboxylate adduct (ONOOCO2-) towards the same reductants. The ratio of product formation was about similar both in the presence of 2.5 mM CO2 and in air-equilibrated conditions. Liver submitochondrial particles supplemented with 0.25-2 microM ONOO- showed a O2- production that indicated ubisemiquinone formation and autooxidation. The nitration of mitochondrial proteins produced after addition of 200 microM ONOO- was observed by Western blot analysis. Protein nitration was prevented by the addition of 50-200 microM ubiquinol-0 or GSH. An intramitochondrial steady state concentration of about 2 nM ONOO- was calculated, taking into account the rate constants and concentrations of ONOO- coreactants.


Biochemical Journal | 2000

Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage

Francisco Schöpfer; Natalia A. Riobo; Maria Cecilia Carreras; Beatriz Alvarez; Rafael Radi; Alberto Boveris; Enrique Cadenas; Juan José Poderoso

A major pathway of nitric oxide utilization in mitochondria is its conversion to peroxynitrite, a species involved in biomolecule damage via oxidation, hydroxylation and nitration reactions. In the present study the potential role of mitochondrial ubiquinol in protecting against peroxynitrite-mediated damage is examined and the requirements of the mitochondrial redox status that support this function of ubiquinol are established. (1) Absorption and EPR spectroscopy studies revealed that the reactions involved in the ubiquinol/peroxynitrite interaction were first-order in peroxynitrite and zero-order in ubiquinol, in agreement with the rate-limiting formation of a reactive intermediate formed during the isomerization of peroxynitrite to nitrate. Ubiquinol oxidation occurred in one-electron transfer steps as indicated by the formation of ubisemiquinone. (2) Peroxynitrite promoted, in a concentration-dependent manner, the formation of superoxide anion by mitochondrial membranes. (3) Ubiquinol protected against peroxynitrite-mediated nitration of tyrosine residues in albumin and mitochondrial membranes, as suggested by experimental models, entailing either addition of ubiquinol or expansion of the mitochondrial ubiquinol pool caused by selective inhibitors of complexes III and IV. (4) Increase in membrane-bound ubiquinol partially prevented the loss of mitochondrial respiratory function induced by peroxynitrite. These findings are analysed in terms of the redox transitions of ubiquinone linked to both nitrogen-centred radical scavenging and oxygen-centred radical production. It may be concluded that the reaction of mitochondrial ubiquinol with peroxynitrite is part of a complex regulatory mechanism with implications for mitochondrial function and integrity.


Free Radical Biology and Medicine | 2002

The reaction of nitric oxide with 6-hydroxydopamine: Implications for Parkinson's disease

Natalia A. Riobo; Francisco Schöpfer; A. Boveris; Enrique Cadenas; Juan José Poderoso

Oxidation of catecholamines is suggested to contribute to oxidative stress in Parkinsons disease. Nitric oxide (*NO) is able to oxidize cyclic compounds like ubiquinol; moreover, recent lines of evidence proposed a direct role of *NO and its by-product peroxynitrite in the pathophysiology of Parkinsons disease. The aim of this study was to analyze the potential reaction between 6-hydroxydopamine, a classic inducer of Parkinsons disease, and *NO. The results showed that *NO reacts with the deprotonated form of 6-hydroxydopamine at pH 7 and 37 degrees C with a second-order rate constant of 1.5 x 10(3) M(-1) x s(-1) as calculated by the rate of *NO decay measured with an amperometric sensor. Accordingly, the rates of formation of 6-hydroxy-dopamine quinone were dependent on *NO concentration. The coincubation of *NO and 6-hydroxydopamine with either bovine serum albumin or alpha-synuclein led to tyrosine nitration of the protein, in a concentration dependent-manner and sensitive to superoxide dismutase. These findings suggest the formation of peroxynitrite during the redox reactions following the interaction of 6-hydroxydopamine with *NO. The implications of this reaction for in vivo models are discussed in terms of the generation of reactive nitrogen and oxygen species within a propagation process that may play a significant role in neurodegenerative diseases.


Journal of the Neurological Sciences | 1999

Circulating plasma factors in Parkinson's disease enhance nitric oxide release of normal human neutrophils

Emilia Gatto; Natalia A. Riobo; Maria Cecilia Carreras; Francisco Schöpfer; Griselda Pargament; Juan José Poderoso

Nitric oxide (*NO)-mediated toxicity has been involved in neurodegenerative diseases, including Parkinsons disease (PD). We have recently reported an increase of about 50% in *NO production rate in PMA-activated polymorphonuclear leukocytes (PMN) from either newly diagnosed or chronically treated PD patients. As humoral factors in sera from PD patients could inhibit cell dopaminergic activity, the aim of this study was to determine whether a plasma circulating factor from PD patients could modify *NO metabolism in PMN from healthy control subjects. To this purpose, we determined simultaneously the maximal production rate of *NO and hydrogen peroxide (H2O2) of PMA-activated PMN isolated from healthy control subjects in the presence of aliquots of plasma of PD patients. The results showed that, after 30 min incubation, plasma from newly diagnosed (n=4) or from L-Dopa chronically treated (n=7) PD patients enhanced *NO release in neutrophils isolated from healthy controls by about 50% and 47% respectively, with respect to non-parkinsonian control plasma (n = 10); in the same condition, H2O2 production did not differ among the groups. These data suggest that an overproduction of *NO related to plasma circulating factors, already detected at initial stages of the disease, participates in the pathophysiology of Parkinsons disease.


Archives of Biochemistry and Biophysics | 1996

NITRIC OXIDE INHIBITS ELECTRON TRANSFER AND INCREASES SUPEROXIDE RADICAL PRODUCTION IN RAT HEART MITOCHONDRIA AND SUBMITOCHONDRIAL PARTICLES

Juan José Poderoso; Maria Cecilia Carreras; Constanza Lisdero; Natalia A. Riobo; Francisco Schöpfer; Alberto Boveris


American Journal of Physiology-heart and Circulatory Physiology | 2003

Modulation of mitochondrial nitric oxide synthase and energy expenditure in rats during cold acclimation

Jorge G. Peralta; Paola Finocchietto; Daniela P. Converso; Francisco Schöpfer; Maria Cecilia Carreras; Juan José Poderoso


Biological Research | 2000

Mitochondrial Function and Nitric Oxide Utilization

Maria Cecilia Carreras; Francisco Schöpfer; Constanza Lisdero; Natalia A. Riobo; Juan José Poderoso

Collaboration


Dive into the Francisco Schöpfer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia A. Riobo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Alberto Boveris

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Constanza Lisdero

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Enrique Cadenas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jorge G. Peralta

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

A. Boveris

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Laura B. Valdez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Silvia Alvarez

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge