Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge L. Salinas is active.

Publication


Featured researches published by Jorge L. Salinas.


Morbidity and Mortality Weekly Report | 2016

Leveling of Tuberculosis Incidence — United States, 2013–2015

Jorge L. Salinas

After 2 decades of progress toward tuberculosis (TB) elimination with annual decreases of ≥0.2 cases per 100,000 persons (1), TB incidence in the United States remained approximately 3.0 cases per 100,000 persons during 2013-2015. Preliminary data reported to the National Tuberculosis Surveillance System indicate that TB incidence among foreign-born persons in the United States (15.1 cases per 100,000) has remained approximately 13 times the incidence among U.S.-born persons (1.2 cases per 100,000). Resuming progress toward TB elimination in the United States will require intensification of efforts both in the United States and globally, including increasing U.S. efforts to detect and treat latent TB infection, strengthening systems to interrupt TB transmission in the United States and globally, accelerating reductions in TB globally, particularly in the countries of origin for most U.S.


Memorias Do Instituto Oswaldo Cruz | 2014

Metabolomics in the fight against malaria.

Jorge L. Salinas; Jessica C. Kissinger; Dean P. Jones; Mary R. Galinski

Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.


PLOS ONE | 2015

Older Age and Time to Medical Assistance Are Associated with Severity and Mortality of Snakebites in the Brazilian Amazon: A Case-Control Study

Esaú L. Feitosa; Vanderson de Souza Sampaio; Jorge L. Salinas; Amanda M. Queiroz; Iran Mendonça da Silva; André Alexandre Gomes; Jacqueline de Almeida Gonçalves Sachett; André Siqueira; Luiz Carlos de Lima Ferreira; Maria Cristina dos Santos; Marcus V. G. Lacerda; Wuelton Marcelo Monteiro

The Amazon region reports the highest incidence of snakebite envenomings in Brazil. We aimed to describe the epidemiology of snakebites in the state of Amazonas and to investigate factors associated with disease severity and lethality. We used a nested case-control study, in order to identify factors associated with snakebite severity and mortality using official Brazilian reporting systems, from 2007 to 2012. Patients evolving to severity or death were considered cases and those with non-severe bites were included in the control group. During the study period, 9,191 snakebites were recorded, resulting in an incidence rate of 52.8 cases per 100,000 person/years. Snakebites mostly occurred in males (79.0%) and in rural areas (70.2%). The most affected age group was between 16 and 45 years old (54.6%). Fifty five percent of the snakebites were related to work activities. Age ≤15 years [OR=1.26 (95% CI=1.03-1.52); (p=0.018)], age ≥65 years [OR=1.53 (95% CI=1.09-2.13); (p=0.012)], work related bites [OR=1.39 (95% CI=1.17-1.63); (p<0.001)] and time to medical assistance >6 hours [OR=1.73 (95% CI=1.45-2.07); (p<0.001)] were independently associated with the risk of severity. Age ≥65 years [OR=3.19 (95% CI=1.40-7.25); (p=0.006)] and time to medical assistance >6 hours [OR=2.01 (95% CI=1.15-3.50); (p=0.013)] were independently associated with the risk of death. Snakebites represent an occupational health problem for rural populations in the Brazilian Amazon with a wide distribution. These results highlight the need for public health strategies aiming to reduce occupational injuries. Most cases of severe disease occurred in the extremes of age, in those with delays in medical attention and those caused by Micrurus bites. These features of victims of snakebite demand adequate management according to well-defined protocols, including prompt referral to tertiary centres when necessary, as well as an effective response from surveillance systems and policy makers for these vulnerable groups.


Emerging Infectious Diseases | 2017

Guillain-Barré Syndrome and Healthcare Needs during Zika Virus Transmission, Puerto Rico, 2016

Emilio Dirlikov; Krista L. Kniss; Chelsea G. Major; Dana Thomas; Cesar A. Virgen; Marrielle Mayshack; Jason Asher; Luis Mier-y-Teran-Romero; Jorge L. Salinas; Daniel M. Pastula; Tyler M. Sharp; James J. Sejvar; Michael A. Johansson; Brenda Rivera-Garcia

To assist with public health preparedness activities, we estimated the number of expected cases of Zika virus in Puerto Rico and associated healthcare needs. Estimated annual incidence is 3.2–5.1 times the baseline, and long-term care needs are predicted to be 3–5 times greater than in years with no Zika virus.


International Journal of Medical Microbiology | 2017

Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria

Luiz Gustavo Gardinassi; Regina J. Cordy; Marcus V. G. Lacerda; Jorge L. Salinas; Wuelton Marcelo Monteiro; Gisely Cardoso de Melo; André Siqueira; Fernando Val; ViLinh Tran; Dean P. Jones; Mary R. Galinski; Shuzhao Li

BACKGROUND Plasmodium vivax is one of the leading causes of malaria worldwide. Infections with this parasite cause diverse clinical manifestations, and recent studies revealed that infections with P. vivax can result in severe and fatal disease. Despite these facts, biological traits of the host response and parasite metabolism during P. vivax malaria are still largely underexplored. Parasitemia is clearly related to progression and severity of malaria caused by P. falciparum, however the effects of parasitemia during infections with P. vivax are not well understood. RESULTS We conducted an exploratory study using a high-resolution metabolomics platform that uncovered significant associations between parasitemia levels and plasma metabolites from 150 patients with P. vivax malaria. Most plasma metabolites were inversely associated with higher levels of parasitemia. Top predicted metabolites are implicated into pathways of heme and lipid metabolism, which include biliverdin, bilirubin, palmitoylcarnitine, stearoylcarnitine, phosphocholine, glycerophosphocholine, oleic acid and omega-carboxy-trinor-leukotriene B4. CONCLUSIONS The abundance of several plasma metabolites varies according to the levels of parasitemia in patients with P. vivax malaria. Moreover, our data suggest that the host response and/or parasite survival might be affected by metabolites involved in the degradation of heme and metabolism of several lipids. Importantly, these data highlight metabolic pathways that may serve as targets for the development of new antimalarial compounds.


PLOS ONE | 2017

Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria

Karan Uppal; Jorge L. Salinas; Wuelton Marcelo Monteiro; Fernando Val; Regina J. Cordy; Ken Liu; Gisely Cardoso de Melo; André Siqueira; Belisa M. L. Magalhães; Mary R. Galinski; Marcus V. G. Lacerda; Dean P. Jones

Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR.


Journal of the Neurological Sciences | 2017

Incidence and clinical characteristics of Guillain-Barré syndrome before the introduction of Zika virus in Puerto Rico

Jorge L. Salinas; Chelsea G. Major; Daniel M. Pastula; Emilio Dirlikov; Ashley Styczynski; Carlos A. Luciano; Valerie Wojna; Tyler M. Sharp; James J. Sejvar; Brenda Rivera-Garcia

BACKGROUND Zika virus has been associated with increases in Guillain-Barré syndrome (GBS) incidence. A GBS incidence estimation and clinical description was performed to assess baseline GBS epidemiology before the introduction of Zika virus in Puerto Rico. METHODS Hospitalization administrative data from an island-wide insurance claims database and U.S. Census Bureau population estimates provided a crude GBS incidence for 2013. This estimate was adjusted using the proportion of GBS cases meeting Brighton criteria for confirmed GBS from nine reference hospitals. Characteristics of confirmed GBS cases in the same nine hospitals during 2012-2015 are described. RESULTS A total of 136 GBS hospitalization claims were filed in 2013 (crude GBS incidence was 3.8 per 100,000 population). The adjusted GBS incidence was 1.7 per 100,000 population. Of 67 confirmed GBS cases during 2012-2015, 66% had an antecedent illness. Median time from antecedent illness to GBS onset was 7days. Most cases (67%) occurred during July-September. CONCLUSIONS Puerto Ricos GBS incidence for 2013 was estimated using a combination of administrative data and medical records review; this method could be employed in other regions to monitor GBS incidence before and after the introduction of GBS infectious triggers.


American Journal of Tropical Medicine and Hygiene | 2017

Respiratory Complications of Plasmodium vivax Malaria: Systematic Review and Meta-Analysis.

Hernando A. del Portillo; Fernando Val; Wuelton Marcelo Monteiro; Quique Bassat; Kim Machado; Lisiane Barbosa; Jorge L. Salinas; André Siqueira; Marcus V. G. Lacerda; Maria Graças Costa Alecrim

Malaria, a major global public health problem, is mainly caused by Plasmodium falciparum and Plasmodium vivax, and is responsible for nearly half a million deaths annually. Although P. vivax malaria was not believed to cause severe disease, recent robust studies have proved otherwise. However, the clinical spectrum and pathogenesis of severe vivax malaria and, especially, its respiratory complications remain poorly understood. A systematic search for articles reporting respiratory complications associated with vivax malaria was performed in Lilacs, Cochrane, Scielo, Web of Science, and Medline databases irrespective of publication date. Prevalence of acute respiratory distress syndrome (ARDS) and associated mortality among vivax patients were calculated from cross-sectional and longitudinal studies, whereas factors associated with mortality were calculated from data pooled from case reports and series of cases. A total of 101 studies were included (49 cross-sectional or longitudinal and 52 case reports or series of cases). Prevalence of ARDS was 2.8% and 2.2% in children and adults, respectively, with nearly 50% mortality. Moreover, female sex (P = 0.013), having any comorbidity (P = 0.036), lower body temperature (P = 0.032), lower hemoglobin (P = 0.043), and oxygen saturation (P = 0.053) values were significantly associated with mortality. Plasmodium vivax malaria respiratory complications included ARDS and were associated with high mortality. Demographics and clinical characteristics upon presentation to hospital were associated with mortality among patients with respiratory complications in vivax malaria. This study reaffirms the evidence of severe and fatal complications of P. vivax malaria and its associated respiratory complications.


PLOS ONE | 2016

Micronutrient Deficiencies and Plasmodium vivax Malaria among Children in the Brazilian Amazon.

Silvana Gomes Benzecry; Márcia Almeida Araújo Alexandre; Sheila Vitor-Silva; Jorge L. Salinas; Gisely Cardoso de Melo; Helyde Albuquerque Marinho; Ângela Tavares Paes; André Siqueira; Wuelton Marcelo Monteiro; Marcus V. G. Lacerda; Heitor Pons Leite

Background There is a growing body of evidence linking micronutrient deficiencies and malaria incidence arising mostly from P. falciparum endemic areas. We assessed the impact of micronutrient deficiencies on malaria incidence and vice versa in the Brazilian state of Amazonas. Methodology/Principal Findings We evaluated children <10 years old living in rural communities in the state of Amazonas, Brazil, from May 2010 to May 2011. All children were assessed for sociodemographic, anthropometric and laboratory parameters, including vitamin A, beta-carotene, zinc and iron serum levels at the beginning of the study (May 2010) and one year later (May 2011). Children were followed in between using passive surveillance for detection of symptomatic malaria. Those living in the study area at the completion of the observation period were reassessed for micronutrient levels. Univariate Cox-proportional Hazards models were used to assess whether micronutrient deficiencies had an impact on time to first P. vivax malaria episode. We included 95 children median age 4.8 years (interquartile range [IQR]: 2.3–6.6), mostly males (60.0%) and with high maternal illiteracy (72.6%). Vitamin A deficiencies were found in 36% of children, beta-carotene deficiency in 63%, zinc deficiency in 61% and iron deficiency in 51%. Most children (80%) had at least one intestinal parasite. During follow-up, 16 cases of vivax malaria were diagnosed amongst 13 individuals. Micronutrient deficiencies were not associated with increased malaria incidence: vitamin A deficiency [Hazard ratio (HR): 1.51; P-value: 0.45]; beta-carotene [HR: 0.47; P-value: 0.19]; zinc [HR: 1.41; P-value: 0.57] and iron [HR: 2.31; P-value: 0.16]). Upon reevaluation, children with al least one episode of malaria did not present significant changes in micronutrient levels. Conclusion Micronutrient serum levels were not associated with a higher malaria incidence nor the malaria episode influenced micronutrient levels. Future studies targeting larger populations to assess micronutrients levels in P. vivax endemic areas are warranted in order to validate these results.


PLOS ONE | 2016

Low Health System Performance, Indigenous Status and Antivenom Underdosage Correlate with Spider Envenoming Severity in the Remote Brazilian Amazon

Vanderson de Souza Sampaio; André Alexandre Gomes; Iran Mendonça da Silva; Jacqueline de Almeida Gonçalves Sachett; Luiz Carlos de Lima Ferreira; Sâmella Silva de Oliveira; Meritxell Sabidó; Hipócrates de Menezes Chalkidis; Maria das Graças Vale Barbosa Guerra; Jorge L. Salinas; Fan Hui Wen; Marcus V. G. Lacerda; Wuelton Marcelo Monteiro

Background A better knowledge of the burden and risk factors associated with severity due to spider bites would lead to improved management with a reduction of sequelae usually seen for this neglected health problem, and would ensure proper use of antivenoms in remote localities in the Brazilian Amazon. The aim of this study was to analyze the profile of spider bites reported in the state of Amazonas in the Western Brazilian Amazon, and to investigate potential risk factors associated with severity of envenomation. Methodology/Principal Findings We used a case-control study in order to identify factors associated with spider bite severity in the Western Brazilian Amazon from 2007 to 2014. Patients evolving to any severity criteria were considered cases and those with non-severe bites were included in the control group. All variables were retrieved from the official Brazilian reporting systems. Socioeconomical and environmental components were also included in a multivariable analysis in order to identify ecological determinants of incidence and severity. A total of 1,181 spider bites were recorded, resulting in an incidence of 4 cases per 100,000 person/year. Most of the spider bites occurred in males (65.8%). Bites mostly occurred in rural areas (59.5%). The most affected age group was between 16 and 45 years old (50.9%). A proportion of 39.7% of the bites were related to work activities. Antivenom was prescribed to 39% of the patients. Envenomings recorded from urban areas [Odds ratio (OR) = 0.40 (95%CI = 0.30–0.71; p<0.001)] and living in a municipality with a mean health system performance index (MHSPI >median [OR = 0.64 (95%CI = 0.39–0.75; p<0.001)] were independently associated with decreased risk of severity. Work related accidents [OR = 2.09 (95%CI = 1.49–2.94; p<0.001)], Indigenous status [OR = 2.15 (95%CI = 1.19–3.86; p = 0.011)] and living in a municipality located >300 km away from the state capital Manaus [OR = 1.90 (95%CI = 1.28–2.40; p<0.001)] were independently associated with a risk of severity. Living in a municipality located >300 km away from the state capital Manaus [OR = 1.53 (95%CI = 1.15–2.02; p = 0.003)] and living in a municipality with a MHSPI <median [OR = 1.91 (95%CI = 1.28–2.47; p = 0.002)] increased the odds of antivenom underdosage. Conclusions Spider bites is prevalent across the study region with a higher incidence in the rainy season in rural areas. Spider bites can be painful and lead to local manifestations but rarely result in life-threatening envenoming. Major local complications were dermonecrosis and secondary infection in cases diagnosed as Loxosceles bites. Based on the correlations shown here, envenomings occurring in remote rural areas, Indigenous status and living in a municipality located >300 km away from the state capital Manaus could be contributing factors to higher severity of spider envenomings in this area, as well as to antivenom underdosage.

Collaboration


Dive into the Jorge L. Salinas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel M. Pastula

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

James J. Sejvar

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Tyler M. Sharp

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Fernando Val

Oswaldo Cruz Foundation

View shared research outputs
Top Co-Authors

Avatar

Gisely Cardoso de Melo

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar

Chelsea G. Major

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge