Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge Quintero is active.

Publication


Featured researches published by Jorge Quintero.


Arthritis & Rheumatism | 2010

Selective functional inhibition of JAK‐3 is sufficient for efficacy in collagen‐induced arthritis in mice

Tsung H. Lin; Martin Hegen; Elizabeth Quadros; Cheryl Nickerson-Nutter; Kenneth C. Appell; Andrew G. Cole; Yuefei Shao; Steve Tam; Michael Ohlmeyer; Bojing Wang; Debra G. Goodwin; Earl F. Kimble; Jorge Quintero; Min Gao; Peter Symanowicz; Christopher Wrocklage; Jennifer Lussier; Scott H. Schelling; Dejun Xuan; Rustem Krykbaev; Jenny Togias; Xin Xu; Richard Harrison; Tarek S. Mansour; Mary Collins; James D. Clark; Maria L. Webb; Katherine J. Seidl

OBJECTIVE All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. METHODS JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3-dependent (interleukin-2 [IL-2]) and -independent (IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation. In vivo, off-target signaling was measured by IL-22- and erythropoietin (EPO)-mediated models, while on-target signaling was measured by IL-2-mediated signaling. Efficacy of JAK-3 inhibitors was determined using delayed-type hypersensitivity (DTH) and collagen-induced arthritis (CIA) models in mice. RESULTS In vitro, WYE-151650 potently suppressed IL-2-induced STAT-5 phosphorylation and cell proliferation, while exhibiting 10-29-fold less activity against JAK-3-independent IL-6- or GM-CSF-induced STAT phosphorylation. Ex vivo, WYE-151650 suppressed IL-2-induced STAT phosphorylation, but not IL-6-induced STAT phosphorylation, as measured in whole blood. In vivo, WYE-151650 inhibited JAK-3-mediated IL-2-induced interferon-gamma production and decreased the natural killer cell population in mice, while not affecting IL-22-induced serum amyloid A production or EPO-induced reticulocytosis. WYE-151650 was efficacious in mouse DTH and CIA models. CONCLUSION In vitro, ex vivo, and in vivo assays demonstrate that WYE-151650 is efficacious in mouse CIA despite JAK-3 selectivity. These data question the need to broadly inhibit JAK-1-, JAK-2-, or Tyk-2-dependent cytokine pathways for efficacy.


Immunopharmacology | 1999

Small molecule antagonists of the bradykinin B1 receptor.

Robert A. Horlick; Michael Ohlmeyer; Ilana L. Stroke; Barbara Strohl; Gonghua Pan; Adriane Schilling; Vidyadhar Paradkar; Jorge Quintero; Ming You; Christopher Mark Riviello; Megan B Thorn; Bassam Damaj; V.Danial Fitzpatrick; Roland E. Dolle; Maria L. Webb; John J. Baldwin; Nolan H. Sigal

Screening Pharmacopeias encoded combinatorial libraries has led to the identification of potent, selective, competitive antagonists at the bradykinin B1 receptor. Libraries were screened using a displacement assay of [3H]-des-Arglo-kallidin ([3H]-dAK) at IMR-90 cells expressing an endogenous human B1 receptor (Bmax = 20,000 receptors/cell, K(D) = 0.5+/-0.1 nM) or against membranes from 293E cells expressing a recombinant human B1 receptor (Bmax = 8,000 receptors/cell, K(D) = 0.5 +/- 0.3 nM). Compound PS020990, an optimized, representative member from the class of compounds, inhibits specific binding of 3H-dAK at IMR-90 cells with a KI of 6 +/- 1 nM. The compound inhibits dAK-induced phosphatidyl inositol turnover (K(Bapp) = 0.4 +/- 0.2 nM) and calcium mobilization (K(Bapp) = 17 +/- 2 nM) in IMR-90 cells. Compounds from the lead series are inactive at the B2 receptor and are > 1000-fold specific for B1 vs. a variety of other receptors, ion channels and enzymes. PS020990 and other related chemotypes therefore offer an excellent opportunity to explore further the role of B1 receptors in disease models and represent a potential therapeutic avenue.


Bioorganic & Medicinal Chemistry Letters | 2009

2-Benzimidazolyl-9-(chroman-4-yl)-purinone derivatives as JAK3 inhibitors.

Andrew G. Cole; Adolph C. Bohnstedt; Vidyadhar M. Paradkar; Celia Kingsbury; Jorge Quintero; Haengsoon Park; Yingchun Lu; Ming You; Irina Neagu; David J. Diller; Jeffrey J. Letourneau; Yuefei Shao; Ray Anthony James; Christopher Mark Riviello; Koc-Kan Ho; Tsung H. Lin; Bojing Wang; Kenneth C. Appell; Matthew A. Sills; Elizabeth Quadros; Earl F. Kimble; Michael Ohlmeyer; Maria L. Webb

A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral bioavailability and demonstrates efficacy in an acute mechanistic mouse model through inhibition of interleukin-2 (IL-2) induced interferon-gamma (INF-gamma) production.


Bioorganic & Medicinal Chemistry Letters | 2018

Identification and initial optimization of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB)

Jeffrey J. Letourneau; Ilana L. Stroke; David W. Hilbert; Laurie J. Sturzenbecker; Brett A. Marinelli; Jorge Quintero; Joan Eileen Sabalski; Linh Ma; David J. Diller; Philip D. Stein; Maria L. Webb

The discovery, synthesis and preliminary structure-activity relationship (SAR) of a novel class of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB) is described. A high throughput screening (HTS) campaign resulted in the identification of moderately active screening hits 1-5 the most potent of which was compound 1 (IC50 = 0.77 µM). In silico docking of an early analog offered suggestions for structural modification which resulted in the design and synthesis of highly potent analogs 13j(IC50 = 1 nM) and 13 l(IC50 = 7 nM) which were chosen as leads for further optimization.


Archive | 2006

Purine and imidazopyridine derivatives for immunosuppression

Michael J. Ohlmeyer; Adolph C. Bohnstedt; Celia Kingsbury; Koc-Kan Ho; Jorge Quintero; Ming You; Haengsoon Park; Yingchun Lu


Archive | 2006

7-Substituted Purine Derivatives for Immunosuppression

Michael J. Ohlmeyer; Adolph C. Bohnstedt; Celia Kingsbury; Koc-Kan Ho; Jorge Quintero


Archive | 2000

Bradykinin b1 receptor antagonists

Michael Ohlmeyer; John J. Baldwin; Roland E. Dolle; Vidyadhar Paradkar; Jorge Quintero; Gonghua Pan


Archive | 2007

2,7,9-substituted purinone derivatives for immunosuppression

Celia Kingsbury; Michael Ohlmeyer; Vidyadhar M. Paradkar; Haengsoon Park; Jorge Quintero; Yuefei Shao


Archive | 2002

Bradykin B1receptor antagonists

Michael Ohlmeyer; John J. Baldwin; Roland E. Dolle; Vidyadhar M. Paradkar; Jorge Quintero; Gonghua Pan


Archive | 2007

BENZODIAZEPINE GCNF MODULATORS FOR STEM CELL MODULATION

Andrew Roughten; Yajing Rong; Jorge Quintero; Michael Ohlmeyer; Steven G. Kultgen; Celia Kingsbury; Koc-Kan Ho

Collaboration


Dive into the Jorge Quintero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge