Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörn Petersen is active.

Publication


Featured researches published by Jörn Petersen.


Genome Biology and Evolution | 2014

Chromera velia, Endosymbioses and the Rhodoplex Hypothesis—Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH Lineages)

Jörn Petersen; Ann-Kathrin Ludewig; Victoria Michael; Boyke Bunk; Michael Jarek; Denis Baurain; Henner Brinkmann

The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five “lucky genes” of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the “rhodoplex hypothesis” as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.


Applied Microbiology and Biotechnology | 2013

Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade

Jörn Petersen; Oliver Frank; Markus Göker; Silke Pradella

The alphaproteobacterial Roseobacter clade (Rhodobacterales) is one of the most important global players in carbon and sulfur cycles of marine ecosystems. The remarkable metabolic versatility of this bacterial lineage provides access to diverse habitats and correlates with a multitude of extrachromosomal elements. Four non-homologous replication systems and additional subsets of individual compatibility groups ensure the stable maintenance of up to a dozen replicons representing up to one third of the bacterial genome. This complexity presents the challenge of successful partitioning of all low copy number replicons. Based on the phenomenon of plasmid incompatibility, we developed molecular tools for target-oriented plasmid curing and could generate customized mutants lacking hundreds of genes. This approach allows one to analyze the relevance of specific replicons including so-called chromids that are known as lifestyle determinants of bacteria. Chromids are extrachromosomal elements with a chromosome-like genetic imprint (codon usage, GC content) that are essential for competitive survival in the natural habitat, whereas classical dispensable plasmids exhibit a deviating codon usage and typically contain type IV secretion systems for conjugation. The impact of horizontal plasmid transfer is exemplified by the scattered occurrence of the characteristic aerobic anoxygenic photosynthesis among the Roseobacter clade and the recently reported transfer of the 45-kb photosynthesis gene cluster to extrachromosomal elements. Conjugative transmission may be the crucial driving force for rapid adaptations and hence the ecological prosperousness of this lineage of pink bacteria.


Environmental Microbiology | 2009

Diversity and evolution of repABC type plasmids in Rhodobacterales.

Jörn Petersen; Henner Brinkmann; Silke Pradella

The repABC operon is the prevalent replication unit of alphaproteobacterial plasmids. Their semi-autonomy is ensured by the essential replicase gene repC as well as the repAB partitioning cassette. While conserved repAB modules are widespread among bacterial plasmids and homologues are even responsible for chromosome partitioning, repC genes are exclusively present in Alphaproteobacteria. RepABC operons contain two strong incompatibility regions, namely a small regulative antisense RNA gene (inc alpha) and a palindromic centromere region (inc beta), which were previously used to classify these replicons. The present survey pursued a complementary strategy essentially following the rationale that all plasmids identified from a single bacterium are per se compatible. We established a novel classification scheme for plasmids based on comprehensive phylogenetic analyses of repC, repA and repB genes. Our case study is focused on the Roseobacter clade (Rhodobacterales), one of the most successful lineages of the marine bacterioplankton. Its global significance was shown in several studies and the interest in these organisms is reflected by more than 40 upcoming genome projects. Based on phylogenetic RepC analyses we identified nine compatibility groups that are expected to stably coexist within the same cell. This prediction is supported by RepA and RepB phylogenies, moreover independent evidence is delivered by the group specificity of highly conserved palindromes (inc beta).


Archives of Microbiology | 2011

Phylogeny and compatibility: plasmid classification in the genomics era.

Jörn Petersen

Whole genome sequences are present-day bonanzas for taxonomists. Comparative genomics provides a promising perspective to reveal the evolutionary relationship between organisms, but this strategy is not applicable for extrachromosomal elements due to their high recombination frequencies. Classification of plasmids is based on their compatibility, i.e., the ability to coexist within the same cell. Compatibility testing is a laborious experimental discipline of pairwise comparisons developed for a small set of replicons. Thus, novel approaches are urgently required to deal with the exponentially increasing amount of sequence data. In this minireview, a short overview about the functional role and distribution of plasmids as well as a summary of recent strategies to classify the replicons via phylogenetic analyses is given. Our own work essentially bases on genes of the replication module, i.e., the replicase and two conserved partitioning genes and we exemplified this approach for the four different plasmid types from Alphaproteobacteria. It is suitable for a reliable classification of these replicons and allows in silico predictions about their compatibility. The development of a general classification scheme for plasmids from all microbial lineages will ensure a systematic assessment of the upcoming data flood and help to understand the distribution of extrachromosomal elements.


eLife | 2016

Dynamic metabolic exchange governs a marine algal-bacterial interaction

Einat Segev; Thomas P. Wyche; Kihyun Kim; Jörn Petersen; Claire Ellebrandt; Hera Vlamakis; Natasha S. Barteneva; Joseph N. Paulson; Liraz Chai; Jon Clardy; Roberto Kolter

Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001


Environmental Microbiology | 2012

Think pink: photosynthesis, plasmids and the Roseobacter clade.

Jörn Petersen; Henner Brinkmann; Boyke Bunk; Victoria Michael; Orsola Päuker; Silke Pradella

Aerobic anoxygenic photosynthesis providing additional ATP for a photoheterotrophic lifestyle is characteristic for several representatives of the marine Roseobacter clade. The patchy distribution of photosynthesis gene clusters (PGCs) within this lineage probably results from horizontal transfers and this explanation is supported by two cases of plasmid-located PGCs. In this study sequencing of the three Sulfitobacter guttiformis plasmids (pSG4, pSG53, pSG118) was initiated with the objective to analyse the 118 kb-sized photosynthetic replicon, but our annotation revealed several additional important traits including key genes of the primary metabolism. The comparison of the two photosynthesis plasmids from S. guttiformis and Roseobacter litoralis showed that their replication modules are located at precisely the same position within the 45 kb-sized PGC. However, comprehensive phylogenetic analyses of the non-homologous replicases (RepB-III, DnaA-like I) and the two ParAB partitioning proteins unequivocally document an independent origin of their extrachromosomal replicons. The analogous positioning within the two photosynthesis super-operons can be explained by a two-step recombination scenario and seems to be the ultimate result of stabilizing selection. Our exemplary analyses of pink plasmids document that chromosomal outsourcing is a common phenomenon in the Roseobacter clade and subsequent horizontal exchanges offer rapid access to the marine pan-genome.


Molecular Biology and Evolution | 2011

Origin and Evolution of a Novel DnaA-Like Plasmid Replication Type in Rhodobacterales

Jörn Petersen; Henner Brinkmann; Martine Berger; Thorsten Brinkhoff; Orsola Päuker; Silke Pradella

Large extrachromosomal elements are widespread among Alphaproteobacteria, but it is unclear how up to a dozen low-copy plasmids can stably coexist within the same cell. We systematically analyzed the distribution of different replicons in about 40 completely sequenced genomes of the Roseobacter clade (Rhodobacterales) and surprisingly identified a novel plasmid replicon type. The conserved replication module comprises the characteristic partitioning operon (parAB) and a hitherto unknown replicase. The latter shows a weak homology to the chromosomal replication initiator DnaA and was accordingly named DnaA-like. Phylogenetic analyses of the adjacent parAB genes document a common ancestry with repA- and repB-type plasmids and moreover indicate the presence of two dnaA-like compatibility groups. This conclusion is supported by conserved palindrome sequences within the replication module that probably represent crucial centromeric anchors for plasmid partitioning. The functionality of dnaA-like replicons was proven by transformation experiments in Phaeobacter gallaeciensis BS107 (DSM 17395). This Roseobacter strain furthermore allows the phenotypical monitoring of plasmid incompatibility, based on a 262-kb dnaA-like replicon required for the brown pigmentation of the bacterium. Uptake of an incompatible construct induces its loss, hence resulting in white colonies. Accordingly, we could substantiate the in silico predictions about stable maintenance of dnaA-like plasmids and thereby functionally validate our approach of plasmid classification based on phylogenetic analyses.


Systematic and Applied Microbiology | 2015

Plasmid curing and the loss of grip – The 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae

Oliver Frank; Victoria Michael; Orsola Päuker; Christian Boedeker; Christian Jogler; Manfred Rohde; Jörn Petersen

Surface colonization is characteristic for a broad range of marine roseobacters and many strains have been isolated from biofilms, microbial mats and dinoflagellates. Phaeobacter inhibens DSM 17395, one of the best-studied representatives of the Roseobacter group, is an effective colonizer of marine surfaces, but the genetic basis of this trait is unknown. Based on the composition of its 65-kb RepA-I type plasmid that contains more than 20 genes for polysaccharide metabolism, including a rhamnose operon, which is required for O-antigen formation in Escherichia coli, it was hypothesized that this replicon was essential for surface attachment. Accordingly, a holistic approach was taken and the functional role of this extrachromosomal element in P. inhibens was investigated. Plasmid curing was performed with the homologous RepA-I replication system of Dinoroseobacter shibae DSM 16493(T). The Δ65-kb mutant completely lost its stickiness and could neither attach to artificial (glass, polystyrene) nor to natural surfaces (algae) and, consequently, its ability to form biofilms was impaired. Surprisingly, the mutant also lost the capacity for flagellar swimming motility required for surface colonization and the dispersal of biofilms. The data clearly showed that the 65-kb replicon of P. inhibens DSM 17395 was a genuine biofilm plasmid-mediating surface attachment. Homologous replicons are widely distributed among Rhodobacterales thus indicating the general importance of extrachromosomal elements for biofilm formation.


Journal of Bacteriology | 2013

Transposon Mutagenesis Identified Chromosomal and Plasmid Genes Essential for Adaptation of the Marine Bacterium Dinoroseobacter shibae to Anaerobic Conditions

Matthias Ebert; Sebastian Laaß; Melanie Burghartz; Jörn Petersen; Sebastian Koßmehl; Lars Wöhlbrand; Ralf Rabus; Christoph Wittmann; Petra Tielen; Dieter Jahn

Anaerobic growth and survival are integral parts of the life cycle of many marine bacteria. To identify genes essential for the anoxic life of Dinoroseobacter shibae, a transposon library was screened for strains impaired in anaerobic denitrifying growth. Transposon insertions in 35 chromosomal and 18 plasmid genes were detected. The essential contribution of plasmid genes to anaerobic growth was confirmed with plasmid-cured D. shibae strains. A combined transcriptome and proteome approach identified oxygen tension-regulated genes. Transposon insertion sites of a total of 1,527 mutants without an anaerobic growth phenotype were determined to identify anaerobically induced but not essential genes. A surprisingly small overlap of only three genes (napA, phaA, and the Na(+)/Pi antiporter gene Dshi_0543) between anaerobically essential and induced genes was found. Interestingly, transposon mutations in genes involved in dissimilatory and assimilatory nitrate reduction (napA, nasA) and corresponding cofactor biosynthesis (genomic moaB, moeB, and dsbC and plasmid-carried dsbD and ccmH) were found to cause anaerobic growth defects. In contrast, mutation of anaerobically induced genes encoding proteins required for the later denitrification steps (nirS, nirJ, nosD), dimethyl sulfoxide reduction (dmsA1), and fermentation (pdhB1, arcA, aceE, pta, acs) did not result in decreased anaerobic growth under the conditions tested. Additional essential components (ferredoxin, cccA) of the anaerobic electron transfer chain and central metabolism (pdhB) were identified. Another surprise was the importance of sodium gradient-dependent membrane processes and genomic rearrangements via viruses, transposons, and insertion sequence elements for anaerobic growth. These processes and the observed contributions of cell envelope restructuring (lysM, mipA, fadK), C4-dicarboxylate transport (dctM1, dctM3), and protease functions to anaerobic growth require further investigation to unravel the novel underlying adaptation strategies.


Environmental Microbiology | 2015

Ocean's twelve: Flagellar and biofilm chromids in the multipartite genome of Marinovum algicola DG898 exemplify functional compartmentalization

Oliver Frank; Markus Göker; Silke Pradella; Jörn Petersen

The marine bacterium Marinovum algicola DG898 is a representative of the Roseobacter group (Rhodobacteraceae, Alphaproteobacteria) and harbours a wealth of 11 extrachromosomal replicons (ECRs) unprecedented for Proteobacteria. The relevance of ECRs has previously been exemplified by photosynthesis and biofilm plasmids, but the evolutionary forces for the emergence of multipartite genomes are largely unknown. The newly established genome revealed the exceptional metabolic potential of Marinovum and its adaptation to the phycosphere. Comparative codon usage analyses allowed the identification of eight chromids and three plasmids. Functional gene clustering is documented by the 52-kb biofilm chromid that is required for surface attachment. The most conspicuous finding is the presence of a highly expressed chromid-encoded flagellum gene cluster (FGC, fla2) that is indispensable for swimming motility. Marinovum algicola DG898 harbours an additional chromosome-encoded flagellum (fla1) with unknown function. Comprehensive phylogenetic analyses revealed the presence of a third FGC type (fla3) in Rhodobacteraceae and indicated the transmission of complete FGCs via conjugation. The current Marinovum study indicates a functional correlation of the intracellular fla2-chromid localization and the subcellular positioning of the flagellum. The proposed mechanism might represent--apart from horizontal transfer--a novel driving force for the emergence of multipartite genomes.

Collaboration


Dive into the Jörn Petersen's collaboration.

Top Co-Authors

Avatar

Silke Pradella

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Frank

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar

Orsola Päuker

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar

Victoria Michael

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann-Kathrin Ludewig

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar

Christian Boedeker

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Researchain Logo
Decentralizing Knowledge