Jose A. Santiago
Rosalind Franklin University of Medicine and Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jose A. Santiago.
Trends in Molecular Medicine | 2013
Jose A. Santiago; Judith A. Potashkin
Recent evidence indicates that Parkinsons disease and diabetes, both age-related chronic diseases, share remarkably similar dysregulated pathways. Exposure to environmental factors and genetic susceptibility play a role in the etiology and progression of both diseases. In light of recent findings, an intriguing hypothesis has emerged that suggests that mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, and alterations in metabolism may lead to insulin resistance and, ultimately, to diabetes and/or neurodegeneration. In this article, we summarize the studies that have addressed the relationship between Parkinsons disease and diabetes and propose that disruptions in these shared molecular networks lead to both chronic diseases.
Frontiers in Aging Neuroscience | 2014
Stacey E. Seidl; Jose A. Santiago; Hope McClusky Bilyk; Judith A. Potashkin
Parkinsons disease (PD) is the second most prevalent neurodegenerative disease in ageing individuals. It is now clear that genetic susceptibility and environmental factors play a role in disease etiology and progression. Because environmental factors are involved with the majority of the cases of PD, it is important to understand the role nutrition plays in both neuroprotection and neurodegeneration. Recent epidemiological studies have revealed the promise of some nutrients in reducing the risk of PD. In contrast, other nutrients may be involved with the etiology of neurodegeneration or exacerbate disease progression. This review summarizes the studies that have addressed these issues and describes in detail the nutrients and their putative mechanisms of action in PD.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jose A. Santiago; Judith A. Potashkin
Significance Development of therapeutic strategies for Parkinson’s disease (PD) is hampered by the lack of reliable biomarkers to identify patients at early stages of the disease and track the therapeutic effect of potential drugs and neuroprotective agents. Readily accessible biomarkers capable of providing information about disease status are expected to accelerate this progress. We identified hepatocyte nuclear factor (HNF4A) and polypyrimidine tract binding protein 1 (PTBP1) mRNAs as promising blood biomarkers for identifying early stage PD patients with high diagnostic accuracy. Furthermore, HNF4A was identified as a potential biomarker to monitor disease severity. Longitudinal analysis demonstrated that HNF4A and PTBP1 are longitudinally dynamic biomarkers that provide insights into the molecular mechanisms underlying the altered insulin signaling in PD patients and may enable novel therapeutic strategies. Environmental and genetic factors are likely to be involved in the pathogenesis of Parkinson’s disease (PD), the second most prevalent neurodegenerative disease among the elderly. Network-based metaanalysis of four independent microarray studies identified the hepatocyte nuclear factor 4 alpha (HNF4A), a transcription factor associated with gluconeogenesis and diabetes, as a central regulatory hub gene up-regulated in blood of PD patients. In parallel, the polypyrimidine tract binding protein 1 (PTBP1), involved in the stabilization and mRNA translation of insulin, was identified as the most down-regulated gene. Quantitative PCR assays revealed that HNF4A and PTBP1 mRNAs were up- and down-regulated, respectively, in blood of 51 PD patients and 45 controls nested in the Diagnostic and Prognostic Biomarkers for Parkinson’s Disease. These results were confirmed in blood of 50 PD patients compared with 46 healthy controls nested in the Harvard Biomarker Study. Relative abundance of HNF4A mRNA correlated with the Hoehn and Yahr stage at baseline, suggesting its clinical utility to monitor disease severity. Using both markers, PD patients were classified with 90% sensitivity and 80% specificity. Longitudinal performance analysis demonstrated that relative abundance of HNF4A and PTBP1 mRNAs significantly decreased and increased, respectively, in PD patients during the 3-y follow-up period. The inverse regulation of HNF4A and PTBP1 provides a molecular rationale for the altered insulin signaling observed in PD patients. The longitudinally dynamic biomarkers identified in this study may be useful for monitoring disease-modifying therapies for PD.
Neurobiology of Disease | 2014
Jose A. Santiago; Judith A. Potashkin
A growing body of evidence indicates an increased risk for developing Parkinsons disease (PD) among people with type 2 diabetes (T2DM). The relationship between the etiology and development of both chronic diseases is beginning to be uncovered and recent studies show that PD and T2DM share remarkably similar dysregulated pathways. It has been proposed that a cascade of events including mitochondrial dysfunction, impaired insulin signaling, and metabolic inflammation trigger neurodegeneration in T2DM models. Network-based approaches have elucidated a potential molecular framework linking both diseases. Further, transcriptional signatures that modulate the neurodegenerative phenotype in T2DM have been identified. Here we contextualize the current experimental approaches to dissect the mechanisms underlying the association between PD and T2DM and discuss the existing challenges toward the understanding of the coexistence of these devastating aging diseases.
PLOS ONE | 2012
Judith A. Potashkin; Jose A. Santiago; Bernard Ravina; Arthur Watts; Alexey A. Leontovich
Diagnosis of Parkinson’ disease (PD) carries a high misdiagnosis rate due to failure to recognize atypical parkinsonian disorders (APD). Usually by the time of diagnosis greater than 60% of the neurons in the substantia nigra are dead. Therefore, early detection would be beneficial so that therapeutic intervention may be initiated early in the disease process. We used splice variant-specific microarrays to identify mRNAs whose expression is altered in peripheral blood of early-stage PD patients compared to healthy and neurodegenerative disease controls. Quantitative polymerase chain reaction assays were used to validate splice variant transcripts in independent sample sets. Here we report a PD signature used to classify blinded samples with 90% sensitivity and 94% specificity and an APD signature that resulted in a diagnosis with 95% sensitivity and 94% specificity. This study provides the first discriminant functions with coherent diagnostic signatures for PD and APD. Analysis of the PD biomarkers identified a regulatory network with nodes centered on the transcription factors HNF4A and TNF, which have been implicated in insulin regulation.
Trends in Molecular Medicine | 2014
Jose A. Santiago; Judith A. Potashkin
Network biology has become a powerful tool to dissect the molecular mechanisms triggering neurodegeneration. Recent developments in network biology have led to the discovery of disease-causing genes, diagnostic biomarkers, and therapeutic targets for several neurodegenerative diseases including Alzheimers, Parkinsons, and Huntingtons diseases. Network-based approaches have provided the molecular rationale for the relationship among cancer, diabetes, and neurodegenerative diseases, and have uncovered unexpected links between apparently unrelated diseases. Here, we summarize the recent advances in network biology to untangle the molecular underpinnings giving rise to the most prevalent neurodegenerative diseases. We propose that network analysis provides a feasible and practical tool for identifying biologically meaningful biomarkers and potential therapeutic targets for clinical intervention in neurodegenerative diseases.
PLOS ONE | 2013
Jose A. Santiago; Judith A. Potashkin
Background Shared dysregulated pathways may contribute to Parkinsons disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinsons disease and type 2 diabetes are linked at the molecular level. Methods and Findings Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinsons disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinsons disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinsons disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinsons disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. Conclusions These results provide the first evidence that Parkinsons disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that increased expression of APP in blood may modulate the neurodegenerative phenotype in type 2 diabetes patients.
Scientific Reports | 2016
Jose A. Santiago; Alyssa M. Littlefield; Judith A. Potashkin
Emerging research indicates that depression could be one of the earliest prodromal symptoms or risk factors associated with the pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder worldwide, but the mechanisms underlying the association between both diseases remains unknown. Understanding the molecular networks linking these diseases could facilitate the discovery of novel diagnostic and therapeutics. Transcriptomic meta-analysis and network analysis of blood microarrays from untreated patients with PD and depression identified genes enriched in pathways related to the immune system, metabolism of lipids, glucose, fatty acids, nicotinamide, lysosome, insulin signaling and type 1 diabetes. Nicotinamide phosphoribosyltransferase (NAMPT), an adipokine that plays a role in lipid and glucose metabolism, was identified as the most significant dysregulated gene. Relative abundance of NAMPT was upregulated in blood of 99 early stage and drug-naïve PD patients compared to 101 healthy controls (HC) nested in the cross-sectional Parkinson’s Progression Markers Initiative (PPMI). Thus, here we demonstrate that shared molecular networks between PD and depression provide an additional source of biologically relevant biomarkers. Evaluation of NAMPT in a larger prospective longitudinal study including samples from other neurodegenerative diseases, and patients at risk of PD is warranted.
PLOS ONE | 2014
Jose A. Santiago; Clemens R. Scherzer; Judith A. Potashkin
Increasing evidence indicates that Parkinsons disease (PD) and type 2 diabetes (T2DM) share dysregulated molecular networks. We identified 84 genes shared between PD and T2DM from curated disease-gene databases. Nitric oxide biosynthesis, lipid and carbohydrate metabolism, insulin secretion and inflammation were identified as common dysregulated pathways. A network prioritization approach was implemented to rank genes according to their distance to seed genes and their involvement in common biological pathways. Quantitative polymerase chain reaction assays revealed that a highly ranked gene, superoxide dismutase 2 (SOD2), is upregulated in PD patients compared to healthy controls in 192 whole blood samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Diagnostic and Prognostic Biomarkers in Parkinsons disease (PROBE). The results from this study reinforce the idea that shared molecular networks between PD and T2DM provides an additional source of biologically meaningful biomarkers. Evaluation of this biomarker in de novo PD patients and in a larger prospective longitudinal study is warranted.
Movement Disorders | 2013
Jose A. Santiago; Clemens R. Scherzer; Judith A. Potashkin
Diagnosis of Parkinsons disease (PD) currently relies on assessment of motor symptoms. Recently, sensitive, specific, and readily available splice variant–specific biomarkers were identified in peripheral blood from participants in the Diagnostic and Prognostic Biomarkers in Parkinson Disease study.