Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Cibelli is active.

Publication


Featured researches published by Jose Cibelli.


Theriogenology | 1999

Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies)

Jonathan R. Hill; Allen J. Roussel; Jose Cibelli; John F. Edwards; N.L. Hooper; M.W. Miller; James A. Thompson; C.R. Looney; Mark E. Westhusin; J.M. Robl; S.L. Stice

The neonatal abnormalities, treatments and outcomes in a group of 13 cloned transgenic calves and fetuses that progressed into the third trimester of pregnancy are described. From these 13 fetuses, 8 calves were born live, 4 stillborn fetuses were recovered from 3 cows that died 7 d to 2 mo before term, and 1 aborted fetus was recovered at 8 mo gestation. All fetuses and calves were derived from the same male fetal Holstein fibroblast cell line transfected with a beta-galactosidase marker gene. Six calves were delivered by Cesarian section and two by vaginal delivery between 278 and 288 d of gestation. Birth weights ranged from 44 to 58.6 kg. Five of the 8 live born calves were judged to be normal within 4 h of birth based on clinical signs and blood gas measurements. One of these 5 calves died at 6 wk of age from a suspected dilated cardiomyopathy. Three of the 8 calves were diagnosed with neonatal respiratory distress immediately following birth, one of which died (at 4 d of age) as a result of pulmonary surfactant deficiency coupled with pulmonary hypertension and elevated systemic venous pressures. Similar findings of chronic pulmonary hypertension were also observed in 2 of 5 fetuses. Placental edema was present in both calves that later died and in the 2 fetuses with cardiopulmonary abnormalities. Hydrallantois occurred with or without placental edema in 6 cows, and only 1 calf from this group survived. The 6 cows without hydrallantois or placental edema produced 5 live calves and 1 aborted fetus. The cardiopulmonary abnormalities observed in the calves and fetuses occurred in utero in conjunction with placental abnormalities, and it is likely that the cloning technique and/or in vitro embryo culture conditions contributed to these abnormalities, although the mechanism remains to be determined.


Cloning | 2000

Cloning of an Endangered Species (Bos gaurus) Using Interspecies Nuclear Transfer

Robert Lanza; Jose Cibelli; Francisca Diaz; Carlos T. Moraes; Peter W. Farin; Charlotte E. Farin; Carolyn Jean Hammer; Michael D. West; Philip Damiani

Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.


Journal of Clinical Investigation | 2008

Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development.

Sook-Young Yoon; Teru Jellerette; Ana M. Salicioni; Hoi Chang Lee; Myung-sik Yoo; Kevin Coward; John Parrington; Daniel Grow; Jose Cibelli; Pablo E. Visconti; Jesse Mager; Rafael A. Fissore

Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca(2+)](i) oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca(2+)](i) oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca(2+)](i) oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.


Molecular Reproduction and Development | 1996

Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes

P. Damiani; Rafael A. Fissore; Jose Cibelli; Charles R. Long; J.J. Balise; James M. Robl; R.T. Duby

In this study we evaluated nuclear and ooplasmic maturation of prepuberal calf oocytes to determine a possible cause for their low developmental competency. Calf oocytes resumed meiosis and arrested at the MII stage at rates similar to that of adult animals; however, zygotes derived from calf oocytes cleaved and developed at significantly lower rates. Ooplasmic maturation was assessed during oocyte maturation and fertilization. Transmission electron microscopy revealed that a majority of calf oocytes exhibited some delay in organelle migration and redistribution following maturation. Immunofluorescence microscopy showed that following IVF, a higher percentage of calf oocytes had abnormal chromatin and microtubule configurations than those of adult cattle. These anomalies were characterized by delayed formation of sperm aster and asynchronous pronuclear formation. Microfluorometry was used to characterize the Ca2+ responses of calf oocytes to the addition of agonists or after IVF. The addition of thimerosal demonstrated the presence of Ca2+ stores in calf oocytes. Injection of near threshold concentrations of inositol 1,4,5‐trisphosphate (InsP3), used to test the sensitivity of the InsP3R, released significantly less Ca2+ in calf than in cow oocytes, whereas higher concentrations of InsP3 (500 μM) released maximal [Ca2+]i in both oocytes. These results suggested that the Ca2+ content of intracellular stores was similar, but the sensitivity of the InsP3R may be different. Following insemination, calf oocytes exhibiting [Ca2+]i oscillations displayed comparable amplitude and intervals to cow oocytes; however, a significantly higher number of fertilized calf oocytes failed to show oscillations. Our findings suggest that the low developmental competence of calf oocytes can be attributed, at least in part, to incomplete or delayed ooplasmic maturation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The transcriptome of human oocytes

Arif Kocabas; Javier Crosby; Pablo J. Ross; Hasan H. Otu; Zeki Beyhan; Handan Can; Wai Leong Tam; Guilherme J. M. Rosa; Robert G. Halgren; Bing Lim; Emilio Fernández; Jose Cibelli

The identification of genes and deduced pathways from the mature human oocyte can help us better understand oogenesis, folliculogenesis, fertilization, and embryonic development. Human metaphase II oocytes were used within minutes after removal from the ovary, and its transcriptome was compared with a reference sample consisting of a mixture of total RNA from 10 different normal human tissues not including the ovary. RNA amplification was performed by using a unique protocol. Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were used for hybridizations. Compared with reference samples, there were 5,331 transcripts significantly up-regulated and 7,074 transcripts significantly down-regulated in the oocyte. Of the oocyte up-regulated probe sets, 1,430 have unknown function. A core group of 66 transcripts was identified by intersecting significantly up-regulated genes of the human oocyte with those from the mouse oocyte and from human and mouse embryonic stem cells. GeneChip array results were validated using RT-PCR in a selected set of oocyte-specific genes. Within the up-regulated probe sets, the top overrepresented categories were related to RNA and protein metabolism, followed by DNA metabolism and chromatin modification. This report provides a comprehensive expression baseline of genes expressed in in vivo matured human oocytes. Further understanding of the biological role of these genes may expand our knowledge on meiotic cell cycle, fertilization, chromatin remodeling, lineage commitment, pluripotency, tissue regeneration, and morphogenesis.


Nature Biotechnology | 1999

Prospects for the use of nuclear transfer in human transplantation

Robert Lanza; Jose Cibelli; Michael D. West

The successful application of nuclear transfer techniques to a range of mammalian species has brought the possibility of human therapeutic cloning significantly closer. The objective of therapeutic cloning is to produce pluripotent stem cells that carry the nuclear genome of the patient and then induce them to differentiate into replacement cells, such as cardiomyocytes to replace damaged heart tissue or insulin-producing β cells for patients with diabetes. Although cloning would eliminate the critical problem of immune incompatibility, there is also the task of reconstituting the cells into more complex tissues and organs in vitro. In the review, we discuss recent progress that has been made in this field as well as the inherent dangers and scientific challenges that remain before these techniques can be used to harness genetically matched cells and tissues for human transplantation.


Cloning and Stem Cells | 2008

TRICHOSTATIN A IMPROVES HISTONE ACETYLATION IN BOVINE SOMATIC CELL NUCLEAR TRANSFER EARLY EMBRYOS

Amy E. Iager; Neli P. Ragina; Pablo J. Ross; Zeki Beyhan; Kerrianne Cunniff; Ramón María Alvargonzález Rodríguez; Jose Cibelli

Epigenetic aberrancies likely preclude correct and complete nuclear reprogramming following somatic cell nuclear transfer (SCNT), and may underlie the observed reduced viability of cloned embryos. In the present study, we tested the effects of the histone deacetylase inhibitor (HDACi), trichostatin A (TSA), on development and histone acetylation of cloned bovine preimplantation embryos. Our results indicated that treating activated reconstructed SCNT embryos with 50 nM TSA for 13 h produced eight-cell embryos with levels of acetylation of histone H4 at lysine 5 (AcH4K5) similar to fertilized counterparts and significantly greater than in control NT embryos (p < 0.005). Further, TSA treatment resulted in SCNT embryos with preimplantation developmental potential similar to fertilized counterparts, as no difference was observed in cleavage and blastocyst rates or in blastocyst total cell number (p > 0.05). Measurement of eight selected developmentally important genes in single blastocysts showed a similar expression profile among the three treatment groups, with the exception of Nanog, Cdx2, and DNMT3b, whose expression levels were higher in TSA-treated NT than in in vitro fertilized (IVF) embryos. Data presented herein demonstrate that TSA can improve at least one epigenetic mark in early cloned bovine embryos. However, evaluation of development to full-term is necessary to ascertain whether this effect reflects a true increase in developmental potential.


Cell Stem Cell | 2007

Interspecies Nuclear Transfer: Implications for Embryonic Stem Cell Biology

Zeki Beyhan; Amy E. Iager; Jose Cibelli

Accessibility of human oocytes for research poses a serious ethical challenge to society. This fact categorically holds true when pursuing some of the most promising areas of research, such as somatic cell nuclear transfer and embryonic stem cell studies. One approach to overcoming this limitation is to use an oocyte from one species and a somatic cell from another. Recently, several attempts to capture the promises of this approach have met with varying success, ranging from establishing human embryonic stem cells to obtaining live offspring in animals. This review focuses on the challenges and opportunities presented by the formidable task of overcoming biological differences among species.


Theriogenology | 1998

CLONING : NEW BREAKTHROUGHS LEADING TO COMMERCIAL OPPORTUNITIES

Steven L. Stice; James M. Robl; F.A. Ponce de León; Joseph Jerry; P.G. Golueke; Jose Cibelli; J.J. Kane

Research on cloning animals, again, came to the forefront of public attention in 1997. Most scientists involved in biomedical and agricultural research have emphasized the benefits, of which there are many, of cloning to the public. Basic studies on nuclear transfer have and will continue to contribute to our understanding of how genomic activation and cell cycle synchrony affect nuclear reprogramming and cloning efficiencies, specifically. Also, more basic information on actual mechanisms and specific factors in the oocyte causing nuclear reprogramming is forthcoming. As new molecular approaches in functional genomics are combined with nuclear transfer experiments, new genes involved in nuclear reprogramming will be found. The commercial potentials of products stemming from discoveries in cloning are vast. Cloning will be a more efficient, faster and more useful way of making transgenic fetuses for cell therapies, adult animals for protein production and organs for xenotransplantation. Clearly there are new opportunities in animal cloning technology that will produce many benefits to society.


Cloning | 2001

Placental anomalies in a viable cloned calf.

Jonathan R. Hill; J.F. Edwards; N. Sawyer; C. Blackwell; Jose Cibelli

Placental anomalies are associated with a high mortality rate in mammalian cloning programs. In this report, we detail the very unusual occurrence of a grossly abnormal placenta that supported a viable cloned calf to term. The placenta was recovered intact 3 h following birth, and its weight was within normal limits (4.3 kg). The chorioallantois of the cloned transgenic female Holstein calf contained only 26 cotyledons. Twelve of these were enlarged and functional. Six were poorly developed, and eight were degenerating. The 12 functional cotyledons ranged in diameter from 8 to 20 cm. The nongravid horn had six rudimentary (<5 cm in diameter) cotyledons and eight cotyledons that remained as oval, mineralized plaques. Despite the reduction in number of placentomes, there was no adventitial placentation. Although this report documents observations from a single case, it does show that a morphologically deficient placenta was able to support development to term and resulted in a viable calf.

Collaboration


Dive into the Jose Cibelli's collaboration.

Top Co-Authors

Avatar

James M. Robl

Advanced Cell Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Lanza

Advanced Cell Technology

View shared research outputs
Top Co-Authors

Avatar

Paul Golueke

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Pablo J. Ross

University of California

View shared research outputs
Top Co-Authors

Avatar

D. Joseph Jerry

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Arif Kocabas

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Zeki Beyhan

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kerrianne Cunniff

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge