Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Lanza is active.

Publication


Featured researches published by Robert Lanza.


Cell Stem Cell | 2009

Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins

Dohoon Kim; Chun-Hyung Kim; Jung-Il Moon; Young-Gie Chung; Mi-Yoon Chang; Baek-Soo Han; Sanghyeok Ko; Eungi Yang; Kwang Yul Cha; Robert Lanza; Kwang-Soo Kim

Document S1. Supplemental Experimental Procedures, Supplemental References, Eight Figures, and Four TablesxDownload (.47 MB ) Document S1. Supplemental Experimental Procedures, Supplemental References, Eight Figures, and Four Tables


The Lancet | 2012

Embryonic stem cell trials for macular degeneration: a preliminary report

Steven D. Schwartz; Jean-Pierre Hubschman; Gad Heilwell; Valentina Franco-Cardenas; Carolyn K. Pan; Rosaleen M. Ostrick; Edmund Mickunas; Irina Klimanskaya; Robert Lanza

BACKGROUND It has been 13 years since the discovery of human embryonic stem cells (hESCs). Our report provides the first description of hESC-derived cells transplanted into human patients. METHODS We started two prospective clinical studies to establish the safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium (RPE) in patients with Stargardts macular dystrophy and dry age-related macular degeneration--the leading cause of blindness in the developed world. Preoperative and postoperative ophthalmic examinations included visual acuity, fluorescein angiography, optical coherence tomography, and visual field testing. These studies are registered with ClinicalTrials.gov, numbers NCT01345006 and NCT01344993. FINDINGS Controlled hESC differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture. After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision. Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardts macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration (from 21 ETDRS letters to 28). INTERPRETATION The hESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months. The future therapeutic goal will be to treat patients earlier in the disease processes, potentially increasing the likelihood of photoreceptor and central visual rescue. FUNDING Advanced Cell Technology.


The Lancet | 2015

Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies

Steven D. Schwartz; Carl D. Regillo; Byron L. Lam; Dean Eliott; Philip J. Rosenfeld; Ninel Z. Gregori; Jean-Pierre Hubschman; Janet L. Davis; Gad Heilwell; Marc J. Spirn; Joseph I. Maguire; Jane Bateman; Rosaleen M. Ostrick; Debra Morris; Matthew Vincent; Eddy Anglade; Lucian V. Del Priore; Robert Lanza

BACKGROUND Since they were first derived more than three decades ago, embryonic stem cells have been proposed as a source of replacement cells in regenerative medicine, but their plasticity and unlimited capacity for self-renewal raises concerns about their safety, including tumour formation ability, potential immune rejection, and the risk of differentiating into unwanted cell types. We report the medium-term to long-term safety of cells derived from human embryonic stem cells (hESC) transplanted into patients. METHODS In the USA, two prospective phase 1/2 studies were done to assess the primary endpoints safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium in nine patients with Stargardts macular dystrophy (age >18 years) and nine with atrophic age-related macular degeneration (age >55 years). Three dose cohorts (50,000, 100,000, and 150,000 cells) were treated for each eye disorder. Transplanted patients were followed up for a median of 22 months by use of serial systemic, ophthalmic, and imaging examinations. The studies are registered with ClinicalTrials.gov, numbers NCT01345006 (Stargardts macular dystrophy) and NCT01344993 (age-related macular degeneration). FINDINGS There was no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue. Adverse events were associated with vitreoretinal surgery and immunosuppression. 13 (72%) of 18 patients had patches of increasing subretinal pigmentation consistent with transplanted retinal pigment epithelium. Best-corrected visual acuity, monitored as part of the safety protocol, improved in ten eyes, improved or remained the same in seven eyes, and decreased by more than ten letters in one eye, whereas the untreated fellow eyes did not show similar improvements in visual acuity. Vision-related quality-of-life measures increased for general and peripheral vision, and near and distance activities, improving by 16-25 points 3-12 months after transplantation in patients with atrophic age-related macular degeneration and 8-20 points in patients with Stargardts macular dystrophy. INTERPRETATION The results of this study provide the first evidence of the medium-term to long-term safety, graft survival, and possible biological activity of pluripotent stem cell progeny in individuals with any disease. Our results suggest that hESC-derived cells could provide a potentially safe new source of cells for the treatment of various unmet medical disorders requiring tissue repair or replacement. FUNDING Advanced Cell Technology.


The Lancet | 2005

Human embryonic stem cells derived without feeder cells

Irina Klimanskaya; Young Chung; Lorraine F. Meisner; Julie A. Johnson; Michael D. West; Robert Lanza

BACKGROUND Human embryonic stem cells are likely to play an important role in the future of regenerative medicine. However, exposure of existing human embryonic stem-cell lines to live animal cells and serum risks contamination with pathogens that could lead to human health risks. We aimed to derive an embryonic stem-cell line without exposure to cells or serum. METHODS Frozen cleavage-stage embryos were thawed and cultured to the blastocyst stage. Inner cell masses were isolated by immunosurgery and plated onto extracellular-matrix-coated plates that can be easily sterilised. Six established human embryonic stem-cell lines were also maintained with this serum and feeder free culture system. FINDINGS A new stem-cell line was derived from human embryos under completely cell and serum free conditions. The cells maintained normal karyotype and markers of pluripotency, including octamer binding protein 4 (Oct-4), stage-specific embryonic antigen (SSEA)-3, SSEA-4, tumour-rejection antigen (TRA)-1-60, TRA-1-81, and alkaline phosphatase. After more than 6 months of undifferentiated proliferation, these cells retained the potential to form derivatives of all three embryonic germ layers both in vitro and in teratomas. These properties were also successfully maintained (for more than 30 passages) with the established stem-cell lines. INTERPRETATION This system eliminates exposure of human embryonic stem cells and their progeny to animal and human feeder layers, and thus the risk of contamination with pathogenic agents capable of transmitting diseases to patients.


Nature Biotechnology | 2002

Generation of Histocompatible Tissues Using Nuclear Transplantation

Robert Lanza

Nuclear transplantation (therapeutic cloning) could theoretically provide a limitless source of cells for regenerative therapy. Although the cloned cells would carry the nuclear genome of the patient, the presence of mitochondria inherited from the recipient oocyte raises questions about the histocompatibility of the resulting cells. In this study, we created bioengineered tissues from cardiac, skeletal muscle, and renal cells cloned from adult bovine fibroblasts. Long-term viability was demonstrated after transplantation of the grafts into the nuclear donor animals. Reverse transcription-PCR (RT-PCR) and western blot analysis confirmed that the cloned tissues expressed tissue-specific mRNA and proteins while expressing a different mitochondrial DNA (mtDNA) haplotype. In addition to creating skeletal muscle and cardiac “patches”, nuclear transplantation was used to generate functioning renal units that produced urinelike fluid and demonstrated unidirectional secretion and concentration of urea nitrogen and creatinine. Examination of the explanted renal devices revealed formation of organized glomeruli- and tubule-like structures. Delayed-type hypersensitivity (DTH) testing in vivo and Elispot analysis in vitro suggested that there was no rejection response to the cloned renal cells. The ability to generate histocompatible cells using cloning techniques addresses one of the major challenges in transplantation medicine.


Nature | 2006

Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres

Young Chung; Irina Klimanskaya; Sandy Becker; Joel Marh; Shi-Jiang Lu; Julie Johnson; Lorraine F. Meisner; Robert Lanza

The most basic objection to human embryonic stem (ES) cell research is rooted in the fact that ES cell derivation deprives embryos of any further potential to develop into a complete human being. ES cell lines are conventionally isolated from the inner cell mass of blastocysts and, in a few instances, from cleavage stage embryos. So far, there have been no reports in the literature of stem cell lines derived using an approach that does not require embryo destruction. Here we report an alternative method of establishing ES cell lines—using a technique of single-cell embryo biopsy similar to that used in pre-implantation genetic diagnosis of genetic defects—that does not interfere with the developmental potential of embryos. Five putative ES and seven trophoblast stem (TS) cell lines were produced from single blastomeres, which maintained normal karyotype and markers of pluripotency or TS cells for up to more than 50 passages. The ES cells differentiated into derivatives of all three germ layers in vitro and in teratomas, and showed germ line transmission. Single-blastomere-biopsied embryos developed to term without a reduction in their developmental capacity. The ability to generate human ES cells without the destruction of ex utero embryos would reduce or eliminate the ethical concerns of many.


Stem Cells | 2010

Hemangioblastic Derivatives from Human Induced Pluripotent Stem Cells Exhibit Limited Expansion and Early Senescence

Qiang Feng; Shi-Jiang Lu; Irina Klimanskaya; Ignatius Gomes; Dohoon Kim; Young Chung; George R. Honig; Kwang-Soo Kim; Robert Lanza

Human induced pluripotent stem cells (hiPSC) have been shown to differentiate into a variety of replacement cell types. Detailed evaluation and comparison with their human embryonic stem cell (hESC) counterparts is critical for assessment of their therapeutic potential. Using established methods, we demonstrate here that hiPSCs are capable of generating hemangioblasts/blast cells (BCs), endothelial cells, and hematopoietic cells with phenotypic and morphologic characteristics similar to those derived from hESCs, but with a dramatic decreased efficiency. Furthermore, in distinct contrast with the hESC derivatives, functional differences were observed in BCs derived from hiPSCs, including significantly increased apoptosis, severely limited growth and expansion capability, and a substantially decreased hematopoietic colony‐forming capability. After further differentiation into erythroid cells, >1,000‐fold difference in expansion capability was observed in hiPSC‐BCs versus hESC‐BCs. Although endothelial cells derived from hiPSCs were capable of taking up acetylated low‐density lipoprotein and forming capillary‐vascular‐like structures on Matrigel, these cells also demonstrated early cellular senescence (most of the endothelial cells senesced after one passage). Similarly, retinal pigmented epithelium cells derived from hiPSCs began senescing in the first passage. Before clinical application, it will be necessary to determine the cause and extent of such abnormalities and whether they also occur in hiPSCs generated using different reprogramming methods. STEM CELLS 2010;28:704–712


Stem Cells | 2009

Long‐Term Safety and Function of RPE from Human Embryonic Stem Cells in Preclinical Models of Macular Degeneration

Bin Lu; Christopher Malcuit; Shaomei Wang; S. Girman; Peter J. Francis; Linda Lemieux; Robert Lanza; Raymond D. Lund

Assessments of safety and efficacy are crucial before human ESC (hESC) therapies can move into the clinic. Two important early potential hESC applications are the use of retinal pigment epithelium (RPE) for the treatment of age‐related macular degeneration and Stargardt disease, an untreatable form of macular dystrophy that leads to early‐onset blindness. Here we show long‐term functional rescue using hESC‐derived RPE in both the RCS rat and Elov14 mouse, which are animal models of retinal degeneration and Stargardt, respectively. Good Manufacturing Practice‐compliant hESC‐RPE survived subretinal transplantation in RCS rats for prolonged periods (>220 days). The cells sustained visual function and photoreceptor integrity in a dose‐dependent fashion without teratoma formation or untoward pathological reactions. Near‐normal functional measurements were recorded at >60 days survival in RCS rats. To further address safety concerns, a Good Laboratory Practice‐compliant study was carried out in the NIH III immune‐deficient mouse model. Long‐term data (spanning the life of the animals) showed no gross or microscopic evidence of teratoma/tumor formation after subretinal hESC‐RPE transplantation. These results suggest that hESCs could serve as a potentially safe and inexhaustible source of RPE for the efficacious treatment of a range of retinal degenerative diseases. STEM CELLS 2009;27:2126–2135


Cloning | 2000

Cloning of an Endangered Species (Bos gaurus) Using Interspecies Nuclear Transfer

Robert Lanza; Jose Cibelli; Francisca Diaz; Carlos T. Moraes; Peter W. Farin; Charlotte E. Farin; Carolyn Jean Hammer; Michael D. West; Philip Damiani

Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.


Blood | 2008

Biologic properties and enucleation of red blood cells from human embryonic stem cells

Shi Jiang Lu; Qiang Feng; Jennifer S. Park; Loyda N. Vida; Bao-Shiang Lee; Michael A. Strausbauch; Peter J. Wettstein; George R. Honig; Robert Lanza

Human erythropoiesis is a complex multistep process that involves the differentiation of early erythroid progenitors to mature erythrocytes. Here we show that it is feasible to differentiate and mature human embryonic stem cells (hESCs) into functional oxygen-carrying erythrocytes on a large scale (10(10)-10(11) cells/6-well plate hESCs). We also show for the first time that the oxygen equilibrium curves of the hESC-derived cells are comparable with normal red blood cells and respond to changes in pH and 2,3-diphosphoglyerate. Although these cells mainly expressed fetal and embryonic globins, they also possessed the capacity to express the adult beta-globin chain on further maturation in vitro. Polymerase chain reaction and globin chain specific immunofluorescent analysis showed that the cells increased expression of beta-globin (from 0% to > 16%) after in vitro culture. Importantly, the cells underwent multiple maturation events, including a progressive decrease in size, increase in glycophorin A expression, and chromatin and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to more than 60% of the cells generating red blood cells with a diameter of approximately 6 to 8 mum. The results show that it is feasible to differentiate and mature hESCs into functional oxygen-carrying erythrocytes on a large scale.

Collaboration


Dive into the Robert Lanza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shi-Jiang Lu

Advanced Cell Technology

View shared research outputs
Top Co-Authors

Avatar

Jose Cibelli

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Qiang Feng

Advanced Cell Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Atala

Wake Forest Institute for Regenerative Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge