Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José F. Cara is active.

Publication


Featured researches published by José F. Cara.


Fertility and Sterility | 1990

Dysregulation of cytochrome P450c17α as the cause of polycystic ovarian syndrome

Robert L. Rosenfield; Randall B. Barnes; José F. Cara; Anne W. Lucky

Polycystic ovarian syndrome (PCOS) appears to be due to a previously unrecognized type of steroidogenic abnormality, one in which hyperandrogenism arises from a regulatory abnormality (dysregulation) rather than from enzyme deficiency. It appears that PCOS typically arises from masculinized regulation of the androgen-forming enzyme (cytochrome P450c17 α ) within ovarian thecal cells. This may arise by either excessive stimulation by luteinizing hormone (LH) or by escape from desensitization to LH. We review evidence which is compatible with the concept that the latter situation may result from an intrinsic intraovarian flaw in the paracrine feedback mechanism by which thecal androgen biosynthesis is inhibited and that coexistent adrenal 17-ketosteroid hyper-responsiveness to corticotropin (ACTH) may be due to a similar type of dysregulation of adrenocortical P450c17 α .


The Journal of Pediatrics | 1992

Six-year results of a randomized, prospective trial of human growth hormone and oxandrolone in Turner syndrome

Ron G. Rosenfeld; Kenneth M. Attie; Jo Anne Brasel; Stephen Burstein; José F. Cara; Steven D. Chernausek; Ronald W. Gotlin; Joyce Kuntze; Barbara M. Lippe; Patrick C. Mahoney; Wayne V. Moore; Paul Saenger; Ann J. Johanson

Seventy girls with Turner syndrome, verified by karyotype, were randomly assigned to observation or treatment with human growth hormone (hGH), oxandrolone, or a combination of hGH plus oxandrolone for a period of 12 to 24 months, to assess the effect of treatment on growth velocity and adult height. Subsequently, all subjects received either hGH alone or hGH plus oxandrolone. Data are presented for 62 subjects treated for a period of 3 to 6 years. When compared with the anticipated growth rate in untreated patients, the growth rate after treatment with hGH, both alone and in combination with oxandrolone, showed a sustained increase for at least 6 years. Treatment is continuing in over half of the subjects; at present, 14 (82%) of 17 girls receiving hGH alone and 41 (91%) of 45 girls receiving combination therapy exceeded their expected adult heights. Thirty girls have completed treatment; mean height for these 30 patients is 151.9 cm, compared with their mean original projected adult height of 143.8 cm. We conclude that therapy with hGH, alone and in combination with oxandrolone, can result in a sustained increase in growth rate and a significant increase in adult height for most prepubertal girls with Turner syndrome.


The Journal of Pediatrics | 1993

Growth response of children with non-growth-hormone deficiency and marked short stature during three years of growth hormone therapy

Nancy J. Hopwood; Raymond L. Hintz; Joseph M. Gertner; Kenneth M. Attie; Ann J. Johanson; Joyce Baptista; Joyce Kuntze; Robert M. Blizzard; José F. Cara; Steven D. Chernausek; Selna L. Kaplan; Barbara M. Lippe; Leslie P. Plotnick; Paul Saenger

Short-term administration of human growth hormone to children with idiopathic short stature can improve mean growth rate and predicted adult height. It is yet unknown whether therapy would alter pubertal development or affect final height. Three-year treatment results in a group of children with idiopathic short stature are reported. For year 1 of the study, 121 prepubertal children were randomly selected to receive somatotropin, 0.3 mg/kg per week, administered subcutaneously three times weekly (n = 63), or to be nontreatment control subjects (n = 58). After 1 year, all subjects were again randomly selected to receive either three-times-weekly or daily dosing at the same total dose. For the 92 subjects who completed 36 months of treatment, mean growth rate increased from a mean of 4.6 cm/yr before treatment to a mean of 8.0 cm/yr in the first year of treatment. Daily dosing resulted in a significantly faster mean growth rate (9.0 cm/yr) than three-times-weekly dosing (7.8 cm/yr) (p = 0.0005). Mean growth rates were 7.6 and 7.2 cm/yr during years 2 and 3, respectively, and did not differ by dosing group. Mean standardized height for all subjects improved from -2.7 to -1.6 after 3 years. When the growth rate was standardized for bone age, however, subjects who remained prepubertal had a significantly greater gain in mean height SD score than subjects who became pubertal during that 3-year period (p < 0.02). Mean standardized Bayley-Pinneau predicted adult height SD score increased from -2.7 to -1.6 and was independent of the timing of pubertal onset, but for individuals this score was more variable. Year-1 growth response, expressed as growth rate or change in height SD score, was the best predictor of growth in subsequent years. Responses to therapy could not be reliably predicted from baseline anthropometric variables, plasma insulin-like growth factor I SD score, growth hormone levels. Final height assessment will be needed to determine the ultimate benefit of therapy.


The Journal of Pediatrics | 1990

Preserving adult height potential in girls with idiopathic true precocious puberty

Mary Kreiter; Stephen Burstein; Robert L. Rosenfield; George W. Moll; José F. Cara; David K. Yousefzadeh; Leona Cuttler; Lynne L. Levitsky

We designed a prospective study of height potential in girls with idiopathic precocious puberty, comparing the presenting features of girls with and without evidence of reduced adult height potential. The 14 girls with impaired adult height prognoses (group 1) were reexamined after treatment with a gonadotropin releasing hormone agonist, nafarelin. The seven girls with the prognosis of unimpaired height (group 2) were followed without therapy. We found that the group could be distinguished at initial examination by the greater bone age/height age ratio of group 1 (mean +/- SEM: 1.4 +/- 0.06 vs 1.0 +/- 0.05; p less than 0.005) and by the greater difference between predicted height and target height in group 1. The mean predicted height in group 1 was significantly less than the mean target height (150.7 +/- 2.1 vs 165.4 +/- 3.0 cm; p less than 0.005), whereas the mean predicted and target heights in group 2 were similar (165.4 +/- 3.0 vs 164.3 +/- 2.1 cm). Initial estradiol levels were also greater in group 1 than in group 2 (21.6 vs 10.6 pg/ml; p less than 0.05), although this difference was not sustained during follow-up. In group 1, nafarelin therapy suppressed the pituitary-gonadal axis, and although there was a transient reduction in height potential in girls with the youngest bone ages during the first 6 months of therapy, 2 years of treatment slightly improved predicted heights from 150.7 +/- 2.1 to 152.7 +/- 2.0 cm (p less than 0.05). Height predictions also increased without therapy during the 2-year observation period in group 2, from 165.4 +/- 3.0 to 168.7 +/- 4.1 cm (p less than 0.05). Our data indicate that gonadotropin releasing hormone agonist therapy preserves height potential in girls with an initially impaired height prognosis, and that height potential is preserved without therapy in those with a good initial height prognosis.


Hormone Research in Paediatrics | 1994

Insulin-like growth factors, insulin-like growth factor binding proteins and ovarian androgen production.

José F. Cara

Increasing evidence indicates that the ovary contains an insulin-like growth factor (IGF) system complete with ligands, binding proteins, and receptors. Through their interaction with IGF receptors on theca-interstitial cell surface membranes, the ligands, IGF-I and IGF-II, synergize with luteinizing hormone (LH) to increase ovarian androgen production. The actions of these growth factors are modulated by intraovarian binding proteins, especially IGFBP-1, IGFBP-2, and IGFBP-3, that enhance or inhibit the biological actions of the IGFs. These observations suggest that the IGF system plays a role in normal ovarian function and in the pathophysiology of ovarian hyperandrogenism and polycystic ovary syndrome.


Endocrinologist | 1994

Recommendations for Diagnosis, Treatment, and Management of Individuals with Turner Syndrome

Ron G. Rosenfeld; Lynn-georgia Tesch; Luis J. Rodriguez-rigau; Elizabeth McCauley; Kerstin Albertsson-Wikland; Ricardo H. Asch; José F. Cara; Felix A. Conte; Judith G. Hall; Barbara M. Lippe; Theodore C. Nagel; E. Kirk Neely; David C. Page; Michael B. Ranke; Paul Saenger; John M. Watkins; Darrell M. Wilson

The objective of this study was to establish the optimum treatment and overall care recommendations for individuals with Turner syndrome at all stages of life as an aid to medical professionals working with these individuals. The Turners Syndrome Society of the United States brought together 16 nat


The Journal of Pediatrics | 1992

Height prognosis of children with true precocious puberty and growth hormone deficiency: Effect of combination therapy with gonadotropin releasing hormone agonist and growth hormone

José F. Cara; Mary Kreiter; Robert L. Rosenfield

We evaluated height prognosis and therapeutic efficacy of long-term, combination therapy with gonadotropin releasing-hormone agonist and growth hormone (GH) in five children (three girls) with coexistent precocious puberty and GH deficiency. Their clinical characteristics and growth response were compared with those of 12 girls with idiopathic true precocious puberty and eight prepubertal GH-deficient children (one girl). Precocious GH-deficient subjects were older than the precocious GH-sufficient children (9.5 +/- 1.8 years vs 6.5 +/- 1.3 years; mean +/- SD), but bone ages were comparable (12 +/- 3.7 years vs 10 +/- 0.9 years); their chronologic age was similar to that of the prepubertal GH-deficient children (9.6 +/- 2.1 years), but bone age was significantly more advanced (6.9 +/- 2.3 years). The mean height velocity of the prepubertal GH-deficient children (3.8 +/- 1.5 cm/yr) was lower than that of the precocious GH-deficient subjects (6.7 +/- 1.6 cm/yr) and the precocious GH-sufficient children (9.5 +/- 2.9 cm/yr). Baseline adult height prediction z scores were significantly lower in the precocious GH-deficient children (-3.7 +/- 1.0) than in either the precocious GH-sufficient children (-2.2 +/- 1.0) or the prepubertal GH-deficient subjects (-1.5 +/- 0.8). During therapy with gonadotropin releasing-hormone agonist, growth rates slowed to an average of 3.7 cm/yr in the precocious GH-deficient children but increased after the addition of GH to 7.4 cm during the first year of combination therapy. After 2 to 3 years of combination therapy, height predictions increased an average of 10 cm, compared with an increase of 2.8 cm in the precocious GH-sufficient group treated with gonadotropin releasing-hormone agonist alone. We conclude that combination treatment with gonadotropin releasing-hormone agonist and GH improves the height prognosis of children with coexistent true precocious puberty and GH deficiency, but falls short of achieving normal adult height potential.


Pediatric Clinics of North America | 1990

Growth hormone for short stature not due to classic growth hormone deficiency.

José F. Cara; Ann J. Johanson

The advent of recombinant DNA technology has resulted in potentially unlimited supplies of growth hormone. Sufficient quantities are now available not only for the long-term, uninterrupted treatment of GH-deficient children but potentially for the treatment of non-GH-deficient patients with other short stature or growth attenuating disorders. Short-term studies have demonstrated an improvement in the growth rates of subjects with isolated short stature, Turner syndrome, and chronic renal failure; and additional studies are under way to assess the efficacy of GH therapy of other short stature syndromes. However, the long-term efficacy and possible adverse effects of GH treatment in these situations is not known. Until there has been more experience, GH deficiency should remain the primary indication for GH treatment. Growth hormone should not be considered routine therapy for other conditions associated with or resulting in short stature. However, research should continue in these areas to define which children may benefit from GH treatment.


The Journal of Pediatrics | 1989

Growth hormone deficiency impedes the rise in plasma insulin-like growth factor I levels associated with precocious puberty

José F. Cara; Stephen Burstein; Leona Cuttler; George William Moll; Robert L. Rosenfield

We tested the hypothesis that growth hormone (GH) mediates the rise in insulin-like growth factor I (IGF-I) concentrations in children with precocious puberty. We studied three groups of patients. Group 1 included six children with GH deficiency and precocious puberty (precocious GH-deficient); group 2 included 10 GH-sufficient patients with idiopathic true precocious puberty (precocious GH-sufficient); and group 3 included 9 prepubertal children with GH deficiency (prepubertal GH-deficient). Growth rates, pubertal status, and plasma IGF-I concentrations were determined at regular intervals. The precocious children with GH deficiency had a mean (+/- SD) growth rate of 7.2 +/- 2.1 significantly below that of the precocious GH-sufficient patients (10.5 +/- 2.5 cm/yr, p less than 0.05) but above that of the prepubertal GH-deficient children (3.9 +/- 1.4 cm/yr, p less than 0.05). The mean IGF-I concentration in the precocious GH-deficient children was 0.77 +/- 0.39 U/ml, significantly lower than the mean level of 2.2 +/- 0.67 U/ml in the precocious GH-sufficient patients (p less than 0.01). However, precocious GH-deficient patients had significantly higher IGF-I values than the prepubertal GH-deficient children (0.24 +/- 0.10 U/ml, p less than 0.05). IGF-I values did not rise with the onset of precocious puberty in four of the precocious GH-deficient children evaluated before and after the development of precocious puberty. However, three patients who began GH treatment did have a rise in plasma IGF-I concentrations to levels of 1.2, 3.4, and 3.7 U/ml, respectively. These findings are compatible with the concept that sex steroids increase IGF-I levels in precocious puberty primarily by increasing GH production. A small but direct effect of sex steroids on IGF-I production may also exist. The onset of precocious puberty in children with organic GH deficiency may mask the abnormal growth pattern of these children and delay diagnosis; determinations of plasma IGF-I concentrations may be helpful in assessing the GH status of these patients.


Pediatric Research | 1996

COST ANALYSIS OF INPATIENT (INPT) VERSUS OUTPATIENT (OPT) MANAGEMENT (RX) OF CHILDREN WITH NEWLY DIAGNOSED (DX) INSULIN-DEPENDENT DIABETES MELLITUS (IDDM).499

José F. Cara; Karen Basha; Donna Marvicsin; Patti Williams; David Nerenz

COST ANALYSIS OF INPATIENT (INPT) VERSUS OUTPATIENT (OPT) MANAGEMENT (RX) OF CHILDREN WITH NEWLY DIAGNOSED (DX) INSULIN-DEPENDENT DIABETES MELLITUS (IDDM). 499

Collaboration


Dive into the José F. Cara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge