Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José G. Sampedro is active.

Publication


Featured researches published by José G. Sampedro.


Molecular and Cellular Biochemistry | 2004

Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity

José G. Sampedro; Salvador Uribe

Stress resistance is essential for survival. The mechanisms of molecule stabilization during stress are of interest for biotechnology, where many enzymes and other biomolecules are increasingly used at high temperatures and/or salt concentrations. Diverse organisms, exhibit rapid synthesis and accumulation of the disaccharide trehalose in response to stress. Trehalose is also rapidly hydrolyzed as soon as stress ends. In isolated enzymes, trehalose stabilizes both, structure and activity. In contrast, at optimal assay conditions, trehalose inhibits enzyme activity. A general mechanism underlying the trehalose effects observed at all temperatures probably is the trehalose-mediated increase in solution viscosity that leads to protein domain motion inhibition. This may be analyzed using Kramers theory. The role of viscosity in the effects of trehalose is analyzed in examples from the literature and in studies on the plasma membrane H+-ATPase from Kluyveromyces lactis. In the cell, it may be proposed that the large concentration of trehalose reached during stress stabilizes structures through viscosity. However, once stress ends trehalose has to be rapidly hydrolyzed in order to avoid the viscosity-mediated inhibition of enzymes.


Biological Procedures Online | 2003

Measuring Solution Viscosity and its Effect on Enzyme Activity.

Salvador Uribe; José G. Sampedro

In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increased by adding increasing concentrations of glycerol, sucrose and trehalose, resulting in a decrease in the reaction rate of the H+-ATPase from the plasma membrane ofKluyveromyces lactis. A direct correlation was found between viscosity (η) and the inhibition of the maximum rate of catalysis (Vmax). The protocol used to measure viscosity by means of a falling ball type viscometer is described, together with the determination of enzyme kinetics and the application of Kramers’ equation to evaluate the effect of viscosity on the rate of ATP hydrolysis by the H+-ATPase.


Phytochemistry | 2011

Purification and partial biochemical characterization of polyphenol oxidase from mamey (Pouteria sapota)

Gisela Palma-Orozco; Alicia Ortiz-Moreno; Lidia Dorantes-Alvarez; José G. Sampedro; Hugo Nájera

While a long shelf life for fruit products is highly desired, enzymatic browning is the main cause of quality loss in fruits and is therefore a main problem for the food industry. In this study polyphenol oxidase (PPO), the main enzyme responsible for browning was isolated from mamey fruit (Pouteria sapota) and characterized biochemically. Two isoenzymes (PPO 1 and PPO 2) were obtained upon ammonium sulfate precipitation and hydrophobic and ion exchange chromatography; PPO 1 was purified up to 6.6-fold with 0.28% yield, while PPO 2 could not be characterized as enzyme activity was completely lost after 24 h of storage. PPO 1 molecular weight was estimated to be 16.1 and 18 kDa by gel filtration and SDS-PAGE, respectively, indicating that the native state of the PPO 1 is a monomer. The optimum pH for PPO 1 activity was 7. The PPO 1 was determined to be maximum thermally stable up to 35°C. Kinetic constants for PPO 1 were K(m)=44 mM and K(m)=1.3 mM using catechol and pyrogallol as substrate, respectively. The best substrates for PPO 1 were pyrogallol, 4-methylcatechol and catechol, while ascorbic acid and sodium metabisulfite were the most effective inhibitors.


Biochimica et Biophysica Acta | 2000

Interactions of arsenate, sulfate and phosphate with yeast mitochondria.

Paulina Cortés; Vicente Castrejón; José G. Sampedro; Salvador Uribe

In the presence of K(+), addition of ATP or ethanol to yeast mitochondria triggers the depletion of the transmembrane potential (DeltaPsi) and this is prevented by millimolar concentrations of phosphate (PO(4)). Different monovalent and polyvalent anions were tested for their protective effects on mitochondria from Saccharomyces cerevisiae. Only arsenate (AsO(4)) and sulfate (SO(4)) were as efficient as PO(4) to protect mitochondria against the K(+) mediated swelling, depletion of the DeltaPsi, and decrease in the ratio of uncoupled state to state 4 respiration rates. Protection by PO(4), SO(4) or AsO(4) was inhibited by mersalyl, suggesting that these anions interact with a site located in the matrix side. In addition, the effects of SO(4) and AsO(4) on the F(1)F(0)-ATPase were tested: both SO(4) and AsO(4) inhibited the synthesis of ATP following competitive kinetics against PO(4) and non-competitive kinetics against ADP. The mersalyl sensitive uptake of (32)PO(4) was not inhibited by SO(4) or AsO(4), suggesting that the synthesis of ATP was inhibited at the F(1)F(0)-ATPase. The hydrolysis of ATP was not inhibited, only a stimulation was observed when AsO(4) or sulfite (SO(3)) were added. It is suggested that the structure and charge similarities of PO(4), AsO(4) and SO(4) result in undiscriminated binding to at least two sites located in the mitochondrial matrix: at one site, occupation by any of these three anions results in protection against uncoupling by K(+); at the second site, in the F(1)F(0)-ATPase, AsO(4) and SO(4) compete for binding against PO(4) leading to inhibition of the synthesis of ATP.


Journal of Biotechnology | 2009

Trehalose-mediated thermal stabilization of glucose oxidase from Aspergillus niger

Karina J. Paz-Alfaro; Yadira G. Ruiz-Granados; Salvador Uribe-Carvajal; José G. Sampedro

Thermal inactivation and enzyme kinetics of glucose oxidase (a FAD dependent enzyme) were studied in the absence and presence of trehalose. The inactivation rate constant decreased by up to 50% at temperatures between 50 and 70 degrees C in the presence of 0.6M trehalose; as a consequence the glucose oxidase half-life increased. Intrinsic fluorescence spectra showed a maximum center of spectral mass (CSM) red shift of 6.5nm. Therefore, major structural changes seem to be related to glucose oxidase thermal inactivation. Trehalose decreased the rate constant for unfolding as monitored by CSM red shift kinetics indicating that this disaccharide favors the most compact folded state. The E(a) for unfolding was increased from 204 to 221kJ mol(-1). It is proposed that FAD dissociation is preceded by the exposition of hydrophobic regions, while the presence of trehalose was able to hinder the release of FAD. Enzyme kinetics analysis showed that trehalose does not affect V(max) but instead decreases K(m); as a result enzyme efficiency was increased. The stabilizing effect of trehalose in a cofactor-dependent enzyme has not been tested to date. In addition, glucose oxidase has an enormous commercial importance and therefore, the use of trehalose to stabilize glucose oxidase in its multiple applications seems to be promising.


Biochimica et Biophysica Acta | 2001

Thermal inactivation of the plasma membrane H+-ATPase from Kluyveromyces lactis. Protection by trehalose.

José G. Sampedro; Paulina Cortés; Rosario A. Muñoz-Clares; Alejandro Casas Fernández; Salvador Uribe

The activity of the isolated plasma membrane H+-ATPase from Kluyveromyces lactis was measured during incubation at 35-45 degrees C and in the absence or in the presence of 0-0.6 M trehalose. As the temperature of incubation was raised from 35 to 45 degrees C, increasing enzyme inactivation rates were observed. Thermal inactivation kinetics of the H+-ATPase were biphasic exhibiting a first rapid phase and then a second slow phase. The transition from the native state occurred through a temperature-mediated increase in the inactivation rate constants of both phases. A model is proposed where the native H+-ATPase yields a partially active intermediary during the first phase of inactivation and then the intermediary is slowly converted into a totally inactive enzyme in the second phase. At each of these temperatures trehalose protected the enzymatic activity in a concentration dependent manner. Full protection was observed at 0.6 M trehalose in the range of 35-40 degrees C. Whereas, at 42 and 45 degrees C, the trehalose-mediated thermoprotection of the H+-ATPase was only partial. Trehalose stabilized the enzyme mainly by preventing the temperature dependent increase of the first and second inactivation rate constants.


FEBS Journal | 2013

A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F‐actin

Daniela Araiza-Olivera; Natalia Chiquete-Félix; Mónica Rosas-Lemus; José G. Sampedro; Antonio Peña; Adela Mújica; Salvador Uribe-Carvajal

In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO2 molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi‐enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F‐actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F‐actin, but not the monomeric globular G‐actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F‐actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies.


Journal of Bacteriology | 2002

Trehalose-Mediated Inhibition of the Plasma Membrane H+-ATPase from Kluyveromyces lactis: Dependence on Viscosity and Temperature

José G. Sampedro; Rosario A. Muñoz-Clares; Salvador Uribe

The effect of increasing trehalose concentrations on the kinetics of the plasma membrane H+-ATPase from Kluyveromyces lactis was studied at different temperatures. At 20 degrees C, increasing concentrations of trehalose (0.2 to 0.8 M) decreased V(max) and increased S(0.5) (substrate concentration when initial velocity equals 0.5 V(max)), mainly at high trehalose concentrations (0.6 to 0.8 M). The quotient V(max)/S(0.5) decreased from 5.76 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the absence of trehalose to 1.63 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the presence of 0.8 M trehalose. The decrease in V(max) was linearly dependent on solution viscosity (eta), suggesting that inhibition was due to hindering of protein domain diffusional motion during catalysis and in accordance with Kramers theory for reactions in solution. In this regard, two other viscosity-increasing agents, sucrose and glycerol, behaved similarly, exhibiting the same viscosity-enzyme inhibition correlation predicted. In the absence of trehalose, increasing the temperature up to 40 degrees C resulted in an exponential increase in V(max) and a decrease in enzyme cooperativity (n), while S(0.5) was not modified. As temperature increased, the effect of trehalose on V(max) decreased to become negligible at 40 degrees C, in good correlation with the temperature-mediated decrease in viscosity. The trehalose-mediated increase in S(0.5) was similar at all temperatures tested, and thus, trehalose effects on V(max)/S(0.5) were always observed. Trehalose increased the activation energy for ATP hydrolysis. Trehalose-mediated inhibition of enzymes may explain why yeast rapidly hydrolyzes trehalose when exiting heat shock.


Fems Yeast Research | 2010

The association of glycolytic enzymes from yeast confers resistance against inhibition by trehalose

Daniela Araiza-Olivera; José G. Sampedro; Adela Mújica; Antonio Peña; Salvador Uribe-Carvajal

During stress, many organisms accumulate compatible solutes. These solutes must be eliminated upon return to optimal conditions as they inhibit cell metabolism and growth. In contrast, enzyme interactions optimize metabolism through mechanisms such as channeling of substrates. It was decided to test the (compatible solute) trehalose-mediated inhibition of some yeast glycolytic pathway enzymes known to associate and whether inhibition is prevented when enzymes are allowed to associate. Trehalose inhibited the isolated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hexokinase (HXK), but not aldolase (ALD) nor phosphoglycerate kinase (PGK). When these enzymes were mixed in pairs, both GAPDH and HXK were protected by either ALD or PGK acquiring the inhibition behavior of the resistant enzyme. GAPDH was not protected by HXK, albumin or lactate dehydrogenase (LDH). Also, ALD did not protect glucose 6-phosphate dehydrogenase (G6PDH), suggesting that protection is specific. In yeast cell extracts, fermentation was resistant to trehalose inhibition, suggesting all enzymes involved in the glucose-dependent production of ethanol were stabilized. It is suggested that during the yeast stress response, enzyme association protects some metabolic pathways against trehalose-mediated inhibition.


Journal of Agricultural and Food Chemistry | 2014

Purification and Partial Biochemical Characterization of Polyphenol Oxidase from Mango (Mangifera indica cv. Manila)

Gisela Palma-Orozco; Norma A. Marrufo-Hernández; José G. Sampedro; Hugo Nájera

Polyphenol oxidase (PPO) is an enzyme widely distributed in the plant kingdom that has been detected in most fruits and vegetables. PPO was extracted and purified from Manila mango (Mangifera indica), and its biochemical properties were studied. PPO was purified 216-fold by hydrophobic interaction and ion exchange chromatography. PPO was purified to homogeneity, and the estimated PPO molecular weight (MW) by SDS-PAGE was ≈31.5 kDa. However, a MW of 65 kDa was determined by gel filtration, indicating a dimeric structure for the native PPO. The isolated PPO showed the highest affinity to pyrogallol (Km = 2.77 mM) followed by 4-methylcatechol (Km = 3.14 mM) and catechol (Km = 15.14 mM). The optimum pH for activity was 6.0. PPO was stable in the temperature range of 20-70 °C. PPO activity was completely inhibited by tropolone, ascorbic acid, sodium metabisulfite, and kojic acid at 0.1 mM.

Collaboration


Dive into the José G. Sampedro's collaboration.

Top Co-Authors

Avatar

Salvador Uribe

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Salvador Uribe-Carvajal

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Adela Mújica

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Antonio Peña

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Daniela Araiza-Olivera

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Yadira G. Ruiz-Granados

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Téllez-Valencia

Universidad Juárez del Estado de Durango

View shared research outputs
Top Co-Authors

Avatar

Christian A. García-Sepúlveda

Universidad Autónoma de San Luis Potosí

View shared research outputs
Top Co-Authors

Avatar

Gisela Palma-Orozco

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Juan M. Hernández-Meza

Universidad Autónoma de San Luis Potosí

View shared research outputs
Researchain Logo
Decentralizing Knowledge