Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Ignacio Andrés is active.

Publication


Featured researches published by José Ignacio Andrés.


The Journal of Nuclear Medicine | 2010

Preclinical Evaluation of 18F-JNJ41510417 as a Radioligand for PET Imaging of Phosphodiesterase-10A in the Brain

Sofie Celen; Michel Koole; Meri De Angelis; Ivan Sannen; Satish K. Chitneni; Jesús Alcázar; Stefanie Dedeurwaerdere; Dieder Moechars; Mark Schmidt; Alfons Verbruggen; Xavier Langlois; Koen Van Laere; José Ignacio Andrés; Guy Bormans

Phosphodiesterases are enzymes that inactivate the intracellular second messengers 3′,5′-cyclic adenosine-monophosphate and/or cyclic guanosine-monophosphate. Of all 11 known phosphodiesterase families, phosphodiesterase-10A (PDE10A) has the most restricted distribution, with high expression in the striatum. PDE10A inhibitors are pursued as drugs for treatment of neuropsychiatric disorders. We have synthesized and evaluated 18F-JNJ41510417 as a selective and high-affinity radioligand for in vivo brain imaging of PDE10A using PET. Methods: The biodistribution of 18F-JNJ41510417 was evaluated in rats. Rat plasma and perfused brain homogenates were analyzed by high-performance liquid chromatography to quantify radiometabolites. Dynamic small-animal PET was performed in rats and in wild-type and PDE10A knock-out mice and compared with ex vivo autoradiography. Blocking and displacement experiments were performed using the nonradioactive analog and other selective PDE10A inhibitors. Results: Tissue distribution studies showed predominant hepatobiliary excretion, sufficient brain uptake (0.56 ± 0.00 percentage injected dose at 2 min after tracer injection), and continuous accumulation of the tracer in the striatum over time; rapid washout of nonspecific binding from other brain regions was observed. Polar radiometabolites were detected in plasma and brain tissue. Dynamic small-animal PET showed continuous tracer accumulation in the striatum, with rapid decline in the cortex and cerebellum. Pretreatment and chase experiments with PDE10A inhibitors showed that the tracer binding to PDE10A was specific and reversible. Imaging in PDE10A knock-out and wild-type mice further confirmed that binding in the striatum was specific for PDE10A. Conclusion: Experiments in rats and PDE10A knock-out mice indicate that 18F-JNJ41510417 binds specifically and reversibly to PDE10A in the striatum, suggesting that this new fluorinated quinoline derivative is a promising candidate for in vivo imaging of PDE10A using PET.


Journal of Medicinal Chemistry | 2012

Discovery of 3-cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1,2,4]triazolo[4,3-a]pyridine (JNJ-42153605): a positive allosteric modulator of the metabotropic glutamate 2 receptor.

José M. Cid; Gary Tresadern; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Laura Iturrino; María Lourdes Linares; Aránzazu García; José Ignacio Andrés; Gregor James Macdonald; Daniel Oehlrich; Hilde Lavreysen; Anton Megens; Abdellah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; Stefan Pype; David Gallacher; Andrés A. Trabanco

Advanced leads from a series of 1,2,4-triazolo[4,3-a]pyridines with mGlu2 receptor PAM activity are reported. By modification of the analogous imidazo[1,2-a]pyridine series, the newly reported leads have improved potency, in vitro ADMET, and hERG as well as good in vivo PK profile. The optimization of the series focused on improving metabolic stability while controlling lipophilicity by introducing small modifications to the scaffold substituents. Analysis of this series combined with our previously reported mGlu2 receptor PAMs showed how lipophilic ligand efficiency was improved during the course of the program. Among the best compounds, example 20 (JNJ-42153605) showed a central in vivo efficacy by inhibition of REM sleep state at a dose of 3 mg/kg po in the rat sleep-wake EEG paradigm, a phenomenon shown earlier to be mGlu2 mediated. In mice, compound 20 reversed PCP-induced hyperlocomotion with an ED₅₀ of 5.4 mg/kg sc, indicative of antipsychotic activity.


Journal of Medicinal Chemistry | 2015

Tau Positron Emission Tomography (PET) Imaging: Past, Present, and Future

Manuela Ariza; Hartmuth C. Kolb; Dieder Moechars; Frederik Rombouts; José Ignacio Andrés

Alzheimers disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia among the elderly population. The good correlation of the density and neocortical spread of neurofibrillary tangles (NFTs) with clinical AD disease progression offers an opportunity for the early diagnosis and staging using a noninvasive imaging technique such as positron emission tomography (PET). Thus, PET imaging of NFTs not only holds promise as a diagnostic tool but also may enable the development of disease modifying therapeutics for AD. In this review, we focus on the structural diversity of tau PET tracers, the challenges related to the identification of high affinity and highly selective NFT ligands, and recent progress in the clinical development of tau PET radioligands.


Journal of Medicinal Chemistry | 2012

Imidazo[1,2-a]pyridines: Orally Active Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor

Andrés A. Trabanco; Gary Tresadern; Gregor James Macdonald; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Aránzazu García; María Lourdes Linares; Sergio A. Alonso de Diego; José Manuel Alonso; Daniel Oehlrich; Abdelah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; José Ignacio Andrés; Hilde Lavreysen; José M. Cid

Advanced leads of an imidazopyridine series of positive allosteric modulators of the metabotropic glutamate 2 (mGlu2) receptor are reported. The optimization of in vitro ADMET and in vivo pharmacokinetic properties led to the identification of 27o. With good potency and selectivity for the mGlu2 receptor, 27o affected sleep-wake architecture in rats after oral treatment, which we have previously shown to be indicative of mGlu2 receptor-mediated central activity.


ACS Chemical Neuroscience | 2010

Discovery of 1,5-disubstituted pyridones: a new class of positive allosteric modulators of the metabotropic glutamate 2 receptor.

José M. Cid; Guillaume Albert Jacques Duvey; Philippe Cluzeau; Vanthea Nhem; Karim Macary; Alexandre Raux; Nicolas Poirier; Jessica Muller; Christelle Bolea; Terry Patrick Finn; Sonia Poli; Mark Epping-Jordan; Emilie Chamelot; Francis Derouet; Françoise Girard; Gregor James Macdonald; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Hilde Lavreysen; María Lourdes Linares; Daniel Oehlrich; Julen Oyarzabal; Gary Tresadern; Andrés A. Trabanco; José Ignacio Andrés; Emmanuel Le Poul; Hassan Julien Imogai; Robert Johannes Lütjens; Jean-Philippe Rocher

A series of 1,5-disubstituted pyridones was identified as positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 2 (mGluR2) via high throughput screening (HTS). Subsequent SAR exploration led to the identification of several compounds with improved in vitro activity. Lead compound 8 was further profiled and found to attenuate the increase in PCP induced locomotor activity in mice.


Journal of Medicinal Chemistry | 2009

Novel Approach for Chemotype Hopping Based on Annotated Databases of Chemically Feasible Fragments and a Prospective Case Study: New Melanin Concentrating Hormone Antagonists

Julen Oyarzabal; Trevor Howe; Jesús Alcázar; José Ignacio Andrés; Rosa Alvarez; Frank M. Dautzenberg; Laura Iturrino; Sonia Martinez; Ilse Van der Linden

A novel strategy for chemotype hopping, based on annotated databases of chemically feasible fragments and their oriented functionalization, is presented. A three-dimensional (3D) similarity analysis of project-oriented functionalized scaffolds provides a prioritized proposal for synthesis with the most appropriate linkers and optimal regiochemistry on R-groups. This strategy maximizes the potential of proprietary and commercially available compounds. A retrospective and prospective case study, on melanin concentrating hormone (MCH) antagonists, showing the impact on the drug discovery process of this new strategy by maintaining primary activity and improving key ADME/Tox property while enhancing intellectual property (IP) position is demonstrated.


Journal of Medicinal Chemistry | 2014

Discovery of 1-Butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1H)-pyridone (JNJ-40411813): A Novel Positive Allosteric Modulator of the Metabotropic Glutamate 2 Receptor

José M. Cid; Gary Tresadern; Guillaume Albert Jacques Duvey; Robert Johannes Lütjens; Terry Patrick Finn; Jean-Philippe Rocher; Sonia Maria Poli; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; María Lourdes Linares; José Ignacio Andrés; Jesús Alcázar; José Manuel Alonso; Gregor James Macdonald; Daniel Oehlrich; Hilde Lavreysen; Abdelah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; Stefan Pype; David Gallacher; Andrés A. Trabanco

We previously reported the discovery of 4-aryl-substituted pyridones with mGlu2 PAM activity starting from the HTS hit 5. In this article, we describe a different exploration from 5 that led to the discovery of a novel subseries of phenylpiperidine-substituted pyridones. The optimization strategy involved the introduction of different spacers between the pyridone core and the phenyl ring of 5. The fine tuning of metabolism and hERG followed by differentiation of advanced leads that were identified on the basis of PK profiles and in vivo potency converged on lead compound 36 (JNJ-40411813). Full in vitro and in vivo profiles indicate that 36 displayed an optimal interplay between potency, selectivity, favorable ADMET/PK and cardiovascular safety profile, and central EEG activity. Compound 36 has been investigated in the clinic for schizophrenia and anxious depression disorders.


Journal of Medicinal Chemistry | 2012

Discovery of 1,4-disubstituted 3-cyano-2-pyridones: a new class of positive allosteric modulators of the metabotropic glutamate 2 receptor.

José M. Cid; Guillaume Albert Jacques Duvey; Gary Tresadern; Vanthea Nhem; Rocco Furnari; Philippe Cluzeau; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; José Manuel Alonso; María Lourdes Linares; José Ignacio Andrés; Sonia Maria Poli; Robert Johannes Lütjens; Hassan Himogai; Jean-Philippe Rocher; Gregor James Macdonald; Daniel Oehlrich; Hilde Lavreysen; Abdelah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; Andrés A. Trabanco

The discovery and characterization of compound 48, a selective and in vivo active mGlu2 receptor positive allosteric modulator (PAM), are described. A key to the discovery was the rational exploration of the initial HTS hit 13 guided by an overlay model built with reported mGlu2 receptor PAM chemotypes. The initial weak in vitro activity of the hit 13 was quickly improved, although compounds still had suboptimal druglike properties. Subsequent modulation of the physicochemical properties resulted in compounds having a more balanced profile, combining good potency and in vivo pharmacokinetic properties. Final refinement by addressing cardiovascular safety liabilities led to the discovery of compound 48. Besides good potency, selectivity, and ADME properties, compound 48 displayed robust in vivo activity in a sleep-wake electroencephalogram (sw-EEG) assay consistent with mGlu2 receptor activation, in accordance with previous work from our laboratories.


Journal of Medicinal Chemistry | 2017

4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate

Michael A. Letavic; Brad M. Savall; Brett D. Allison; Leah Aluisio; José Ignacio Andrés; Meri De Angelis; Hong Ao; Derek A. Beauchamp; Pascal Bonaventure; Stewart Bryant; Nicholas I. Carruthers; Marc Ceusters; Kevin J. Coe; Curt A. Dvorak; Ian C. Fraser; Christine F. Gelin; Tatiana Koudriakova; Jimmy T. Liang; Brian Lord; Timothy W. Lovenberg; Monicah A. Otieno; Freddy Schoetens; Devin M. Swanson; Qi Wang; Alan D. Wickenden; Anindya Bhattacharya

The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.


NeuroImage | 2010

[18F]JNJ41510417 a potential PET radioligand for imaging phosphodiesterase-10A in the brain

Sofie Celen; Michel Koole; Meri De Angelis; Ivan Sannen; Satish K. Chitneni; Jesús Alcázar; Stefanie Dedeurwaerdere; Dieder Moechars; Mark Schmidt; Alfons Verbruggen; Langlois Xavier; Koen Van Laere; José Ignacio Andrés; Guy Bormans

Phosphodiesterase-10A (PDE10A) is an enzyme that inactivates the intracellular second messengers cAMP and cGMP. Of all known PDE families, PDE10A has the most restricted distribution with high expression in striatum. Therefore, PDE10A inhibitors have been suggested for treatment of neuropsychiatric disorders. The aim of this study was to evaluate [F]JNJ41510417 for in vivo positron emission tomography (PET) of PDE10A in the brain.

Collaboration


Dive into the José Ignacio Andrés's collaboration.

Top Co-Authors

Avatar

Guy Bormans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sofie Celen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alfons Verbruggen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Koen Van Laere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Koole

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge