Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose L. S. Lopes is active.

Publication


Featured researches published by Jose L. S. Lopes.


Phytochemistry | 2009

Physico-chemical and antifungal properties of protease inhibitors from Acacia plumosa.

Jose L. S. Lopes; N.F. Valadares; D.I. Moraes; J.C. Rosa; H.S.S. Araújo; Leila M. Beltramini

This study was aimed at investigating the purification, biological activity, and some structural properties of three serine protease inhibitors isoforms, denoted ApTIA, ApTIB, and ApTIC from Acacia plumosa Lowe seeds. They were purified from the saline extract of the seeds, using Superdex-75 gel filtration and Mono-S ion exchange chromatography. They were further investigated by mass spectrometry, spectroscopic measurements, surface plasmon resonance, and inhibition assays with proteases and phytopathogenic fungi. The molecular mass of each isoform was estimated at ca. 20 kDa. Each contained two polypeptide chains linked by a disulfide bridge, with different isoelectric points that are acidic in nature. The N-terminal sequences of both chains indicated that they were Kunitz-type inhibitors. Circular dichroism (CD) analyses suggested the predominance of both disordered and beta-strands on ApTI isoforms secondary structure, as expected for beta-II proteins. In addition, it was observed that the proteins were very stable, even at either extreme pH values or at high temperature, with denaturation midpoints close to 75 degrees C. The isoinhibitors could delay, up to 10 times, the blood coagulation time in vitro and inhibited action of trypsin (Ki 1.8 nM), alpha-chymotrypsin (Ki 10.3 nM) and kallikrein (Ki 0.58 microM). The binding of ApTIA, ApTIB, and ApTIC to trypsin and alpha-chymotrypsin, was investigated by surface plasmon resonance (SPR), this giving dissociation constants of 0.39, 0.56 and 0.56 nM with trypsin and 7.5, 6.9 and 3.5 nM with alpha-chymotrypsin, respectively. The growth profiles of Aspergillus niger, Thielaviopsis paradoxa and Colletotrichum sp. P10 were also inhibited by each isoforms. These three potent inhibitors from A. plumosa may therefore be of great interest as specific inhibitors to regulate proteolytic processes.


Protein Science | 2014

Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses

Jose L. S. Lopes; Andrew J. Miles; Lee Whitmore; B. A. Wallace

Circular dichroism (CD) spectroscopy is a valuable method for defining canonical secondary structure contents of proteins based on empirically‐defined spectroscopic signatures derived from proteins with known three‐dimensional structures. Many proteins identified as being “Intrinsically Disordered Proteins” have a significant amount of their structure that is neither sheet, helix, nor turn; this type of structure is often classified by CD as “other”, “random coil”, “unordered”, or “disordered”. However the “other” category can also include polyproline II (PPII)‐type structures, whose spectral properties have not been well‐distinguished from those of unordered structures. In this study, synchrotron radiation circular dichroism spectroscopy was used to investigate the spectral properties of collagen and polyproline, which both contain PPII‐type structures. Their native spectra were compared as representatives of PPII structures. In addition, their spectra before and after treatment with various conditions to produce unfolded or denatured structures were also compared, with the aim of defining the differences between CD spectra of PPII and disordered structures. We conclude that the spectral features of collagen are more appropriate than those of polyproline for use as the representative spectrum for PPII structures present in typical amino acid‐containing proteins, and that the single most characteristic spectroscopic feature distinguishing a PPII structure from a disordered structure is the presence of a positive peak around 220nm in the former but not in the latter. These spectra are now available for inclusion in new reference data sets used for CD analyses of the secondary structures of soluble proteins.


Biochimica et Biophysica Acta | 2011

Osmotin from Calotropis procera latex: new insights into structure and antifungal properties.

Cleverson D.T. Freitas; Jose L. S. Lopes; Leila M. Beltramini; Raquel S.B. Oliveira; José Tadeu Abreu Oliveira; Márcio V. Ramos

This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: α-helix (20%), β-sheet (33%), turned (19%) and unordered (28%), RMSD 1%. CpOsm was stable at up to 75°C, and thermal denaturation (T(m)) was calculated to be 77.8°C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins.


Biochimica et Biophysica Acta | 2009

Disruption of Saccharomyces cerevisiae by Plantaricin 149 and investigation of its mechanism of action with biomembrane model systems

Jose L. S. Lopes; Thatyane M. Nobre; Alvaro Siano; Verónica Humpola; Nelma Regina Segnini Bossolan; Maria Elisabete Darbello Zaniquelli; Georgina Tonarelli; Leila M. Beltramini

The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 muM is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption.


Biochimica et Biophysica Acta | 2014

Deconstructing the DGAT1 enzyme: Binding sites and substrate interactions

Jose L. S. Lopes; Thatyane M. Nobre; Eduardo Maffud Cilli; Leila M. Beltramini; Ana Paula U. Araújo; B. A. Wallace

Diacylglycerol acyltransferase 1 (DGAT1) is a microsomal membrane enzyme responsible for the final step in the synthesis of triacylglycerides. Although DGATs from a wide range of organisms have nearly identical sequences, there is little structural information available for these enzymes. The substrate binding sites of DGAT1 are predicted to be in its large luminal extramembranous loop and to include common motifs with acyl-CoA cholesterol acyltransferase enzymes and the diacylglycerol binding domain found in protein kinases. In this study, synthetic peptides corresponding to the predicted binding sites of DGAT1 enzyme were examined using synchrotron radiation circular dichroism spectroscopy, fluorescence emission and adsorption onto lipid monolayers to determine their interactions with substrates associated with triacylglyceride synthesis (oleoyl-CoA and dioleoylglycerol). One of the peptides, Sit1, which includes the FYxDWWN motif common to both DGAT1 and acyl-CoA cholesterol acyltransferase, changes its conformation in the presence of both substrates, suggesting its capability to bind their acyl chains. The other peptide (Sit2), which includes the putative diacylglycerol binding domain HKWCIRHFYKP found in protein kinase C and diacylglycerol kinases, appears to interact with the charged headgroup region of the substrates. Moreover, in an extended-peptide which contains Sit1 and Sit2 sequences separated by a flexible linker, larger conformational changes were induced by both substrates, suggesting that the two binding sites may bring the substrates into close proximity within the membrane, thus catalyzing the formation of the triacylglyceride product.


Biophysical Journal | 2013

Folding Factors and Partners for the Intrinsically Disordered Protein Micro-Exon Gene 14 (MEG-14)

Jose L. S. Lopes; Débora Orcia; Ana Paula U. Araújo; Ricardo DeMarco; B. A. Wallace

The micro-exon genes (MEG) of Schistosoma mansoni, a parasite responsible for the second most widely spread tropical disease, code for small secreted proteins with sequences unique to the Schistosoma genera. Bioinformatics analyses suggest the soluble domain of the MEG-14 protein will be largely disordered, and using synchrotron radiation circular dichroism spectroscopy, its secondary structure was shown to be essentially completely unfolded in aqueous solution. It does, however, show a strong propensity to fold into more ordered structures under a wide range of conditions. Partial folding was produced by increasing temperature (in a reversible process), contrary to the behavior of most soluble proteins. Furthermore, significant folding was observed in the presence of negatively charged lipids and detergents, but not in zwitterionic or neutral lipids or detergents. Absorption onto a surface followed by dehydration stimulated it to fold into a helical structure, as it did when the aqueous solution was replaced by nonaqueous solvents. Hydration of the dehydrated folded protein was accompanied by complete unfolding. These results support the identification of MEG-14 as a classic intrinsically disordered protein, and open the possibility of its interaction/folding with different partners and factors being related to multifunctional roles and states within the host.


Biochimica et Biophysica Acta | 2013

Lipid interaction triggering Septin2 to assembly into β-sheet structures investigated by Langmuir monolayers and PM-IRRAS

Julio Cesar Pissuti Damalio; Thatyane M. Nobre; Jose L. S. Lopes; Osvaldo N. Oliveira; Ana Paula U. Araújo

The molecular mechanisms responsible for protein structural changes in the central nervous system leading to Alzheimers disease are unknown, but there is evidence that a family of proteins known as septins may be involved. Septins are a conserved group of GTP-binding proteins which participate in various cellular processes, including polarity determination and membrane dynamics. SEPT1, SEPT4, and SEPT2 have been found in deposits known as neurofibrillary tangles and glial fibrils in Alzheimers disease. In this study, we provide molecular-level information for the interaction of SEPT2 with Langmuir monolayers at the air/water interface, which are used as simplified membrane models. The high surface activity of SEPT2 causes it to adsorb onto distinct types of lipid Langmuir monolayers, namely dipalmitoylphosphatidylcholine and PtdIns(4,5)P2. However, the interaction with PtdIns(4,5)P2 is much stronger, not only leading to a higher adsorption, but also to SEPT2 remaining inserted within the membrane at high surface pressures. Most importantly, in situ polarization-modulated infrared reflection absorption spectroscopy results indicated that the native secondary structure of SEPT2 is preserved upon interacting with PtdIns(4,5)P2, but not when dipalmitoylphosphatidylcholine is at the air/water interface. Taken together, the results presented here suggest that the interaction between SEPT2 and the cell membrane may play an important role in the assembly of SEPT2 into amyloid-like fibers.


Biochimica et Biophysica Acta | 2014

Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli

Andrias O. O'Reilly; Ambrose R. Cole; Jose L. S. Lopes; Angelika Lampert; B. A. Wallace

Background Animal neurotoxin peptides are valuable probes for investigating ion channel structure/function relationships and represent lead compounds for novel therapeutics and insecticides. However, misfolding and aggregation are common outcomes when toxins containing multiple disulfides are expressed in bacteria. Methods The β-scorpion peptide toxin Bj-xtrIT from Hottentotta judaica and four chaperone enzymes (DsbA, DsbC, SurA and FkpA) were co-secreted into the oxidizing environment of the Escherichia coli periplasm. Expressed Bj-xtrIT was purified and analyzed by HPLC and FPLC chromatography. Its thermostability was assessed using synchrotron radiation circular dichroism spectroscopy and its crystal structure was determined. Results Western blot analysis showed that robust expression was only achieved when cells co-expressed the chaperones. The purified samples were homogenous and monodisperse and the protein was thermostable. The crystal structure of the recombinant toxin confirmed that it adopts the native disulfide connectivity and fold. Conclusions The chaperones enabled correct folding of the four-disulfide-bridged Bj-xtrIT toxin. There was no apparent sub-population of misfolded Bj-xtrIT, which attests to the effectiveness of this expression method. General significance We report the first example of a disulfide-linked scorpion toxin natively folded during bacterial expression. This method eliminates downstream processing steps such as oxidative refolding or cleavage of a fusion-carrier and therefore enables efficient production of insecticidal Bj-xtrIT. Periplasmic chaperone activity may produce native folding of other extensively disulfide-reticulated proteins including animal neurotoxins. This work is therefore relevant to venomics and studies of a wide range of channels and receptors.


PLOS ONE | 2014

New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

Adelina B. Batista; José Tadeu Abreu Oliveira; Juliana M. Gifoni; Mirella L. Pereira; Marina G. G. Almeida; Valdirene M. Gomes; Maura Da Cunha; Suzanna F. F. Ribeiro; Germana Bueno Dias; Leila M. Beltramini; Jose L. S. Lopes; Thalles B. Grangeiro; Ilka M. Vasconcelos

Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL−1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.


Biopolymers | 2013

New small proteinase inhibitors from Capsicum annuum seeds: Characterization, stability, spectroscopic analysis and a cDNA cloning

Suzanna F. F. Ribeiro; Kátia Valevski Sales Fernandes; Izabela S. Santos; Gabriel Bonan Taveira; André de Oliveira Carvalho; Jose L. S. Lopes; Leila M. Beltramini; Rosana Rodrigues; Ilka M. Vasconcelos; Maura Da Cunha; Gonçalo Apolinário de Souza-Filho; Valdirene M. Gomes

Recent results from our laboratory have previously shown the purification of a small serine proteinase inhibitor (PI), named CaTI1, from Capsicum annuum seeds. This work demonstrated the characterization of CaTI now named CaTI1, and the identification of two other small serine PIs, named CaTI2 and CaTI3, also present in these seeds. CaTI1 presented molecular mass of 6 kDa and pI value of ∼9.0. CaTI1 inhibited both trypsin and chymotrypsin with inhibition constants (Ki and Ki′) of 14 and 2.8 nM for trypsin and 4.3 and 0.58 nM for chymotrypsin, respectively. Circular dichroism analysis suggested the predominance of both disordered and β‐strands regions in the secondary structure. CaTI1 presented striking physico‐chemical stability. In an attempt to get the entire sequence of CaTI1 we found another PI called CaTI2. The discussion of this finding is in the main text. A degenerate primer was designed based on the sequence of trypsin inhibitor CaTI1 in an attempt to achieve the cloning of this PI. Surprisingly, the alignment of the predicted peptide derived from the cDNA with the protein database showed similarity with other C. annuun PIs, and thus it was called CaTI3.

Collaboration


Dive into the Jose L. S. Lopes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Débora Orcia

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Ilka M. Vasconcelos

Federal University of Ceará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Márcio V. Ramos

Federal University of Ceará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge