Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose L. V. Mejino is active.

Publication


Featured researches published by Jose L. V. Mejino.


Archive | 2008

The Foundational Model of Anatomy Ontology

Cornelius Rosse; Jose L. V. Mejino

Anatomy is the structure of biological organisms. The term also denotes the scientific discipline devoted to the study of anatomical entities and the structural and developmental relations that obtain among these entities during the lifespan of an organism. Anatomical entities are the independent continuants of biomedical reality on which physiological and disease processes depend, and which, in response to etiological agents, can transform themselves into pathological entities. For these reasons, hard copy and in silico information resources in virtually all fields of biology and medicine, as a rule, make extensive reference to anatomical entities. Because of the lack of a generalizable, computable representation of anatomy, developers of computable terminologies and ontologies in clinical medicine and biomedical research represented anatomy from their own more or less divergent viewpoints. The resulting heterogeneity presents a formidable impediment to correlating human anatomy not only across computational resources but also with the anatomy of model organisms used in biomedical experimentation. The Foundational Model of Anatomy (FMA) ontology is being developed to fill the need for a generalizable anatomy ontology, which can be used and adapted by any computer-based application that requires anatomical information. Moreover it is evolving into a standard reference for divergent views of anatomy and a template for representing the anatomy of animals. A distinction is made between the FMA ontology as a theory of anatomy and the implementation of this theory as the FMA artifact. In either sense of the term, the FMA is a spatial-structural ontology of the entities and relations which together form the phenotypic structure of the human organism at all biologically salient levels of granularity. Making use of explicit ontological principles and sound methods, it is designed to be understandable by human beings and navigable by computers. The FMA’s ontological structure provides for machine-based inference, enabling powerful computational tools of the future to reason with biomedical data.


Frontiers in Neuroinformatics | 2010

Application of Neuroanatomical Ontologies for Neuroimaging Data Annotation

Jessica A. Turner; Jose L. V. Mejino; James F. Brinkley; Landon T. Detwiler; Hyo Jong Lee; Maryann E. Martone; Daniel L. Rubin

The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website1. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.


conference on spatial information theory | 2005

Anatomical information science

Barry Smith; Jose L. V. Mejino; Stefan Schulz; Anand Kumar; Cornelius Rosse

The Foundational Model of Anatomy (FMA) is a map of the human body. Like maps of other sorts – including the map-like representations we find in familiar anatomical atlases – it is a representation of a certain portion of spatial reality as it exists at a certain (idealized) instant of time. But unlike other maps, the FMA comes in the form of a sophisticated ontology of its object-domain, comprising some 1.5 million statements of anatomical relations among some 70,000 anatomical universals or kinds. It is further distinguished from other maps in that it represents not some specific portion of spatial reality (say: Leeds in 1996), but rather the generalized or idealized spatial reality associated with a generalized or idealized human being at some generalized or idealized instant of time. It will be our concern in what follows to outline the approach to ontology that is represented by the FMA and to argue that it can serve as the basis for a new type of anatomical information science. We also draw some implications for our understanding of spatial reasoning and spatial ontologies in general.


Frontiers in Physiology | 2014

Evaluation and integration of disparate classification systems for clefts of the lip

Kathie H. Wang; Carrie L. Heike; Melissa D. Clarkson; Jose L. V. Mejino; James F. Brinkley; Raymond Tse; Craig B. Birgfeld; David A. Fitzsimons; Timothy C. Cox

Orofacial clefting is a common birth defect with wide phenotypic variability. Many systems have been developed to classify cleft patterns to facilitate diagnosis, management, surgical treatment, and research. In this review, we examine the rationale for different existing classification schemes and determine their inter-relationships, as well as strengths and deficiencies for subclassification of clefts of the lip. The various systems differ in how they describe and define attributes of cleft lip (CL) phenotypes. Application and analysis of the CL classifications reveal discrepancies that may result in errors when comparing studies that use different systems. These inconsistencies in terminology, variable levels of subclassification, and ambiguity in some descriptions may confound analyses and impede further research aimed at understanding the genetics and etiology of clefts, development of effective treatment options for patients, as well as cross-institutional comparisons of outcome measures. Identification and reconciliation of discrepancies among existing systems is the first step toward creating a common standard to allow for a more explicit interpretation that will ultimately lead to a better understanding of the causes and manifestations of phenotypic variations in clefting.


international conference of the ieee engineering in medicine and biology society | 2009

Composite annotations: Requirements for mapping multiscale data and models to biomedical ontologies

Daniel L. Cook; Jose L. V. Mejino; Maxwell Lewis Neal; John H. Gennari

Current methods for annotating biomedical data resources rely on simple mappings between data elements and the contents of a variety of biomedical ontologies and controlled vocabularies. Here we point out that such simple mappings are inadequate for large-scale multiscale, multidomain integrative “virtual human” projects. For such integrative challenges, we describe a “composite annotation” schema that is simple yet sufficiently extensible for mapping the biomedical content of a variety of data sources and biosimulation models to available biomedical ontologies.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2013

The ontology of craniofacial development and malformation for translational craniofacial research

James F. Brinkley; Charles D. Borromeo; Melissa D. Clarkson; Timothy C. Cox; M.J. Cunningham; Landon T. Detwiler; Carrie L. Heike; Harry Hochheiser; Jose L. V. Mejino; Ravensara S. Travillian; Linda G. Shapiro

We introduce the Ontology of Craniofacial Development and Malformation (OCDM) as a mechanism for representing knowledge about craniofacial development and malformation, and for using that knowledge to facilitate integrating craniofacial data obtained via multiple techniques from multiple labs and at multiple levels of granularity. The OCDM is a project of the NIDCR‐sponsored FaceBase Consortium, whose goal is to promote and enable research into the genetic and epigenetic causes of specific craniofacial abnormalities through the provision of publicly accessible, integrated craniofacial data. However, the OCDM should be usable for integrating any web‐accessible craniofacial data, not just those data available through FaceBase. The OCDM is based on the Foundational Model of Anatomy (FMA), our comprehensive ontology of canonical human adult anatomy, and includes modules to represent adult and developmental craniofacial anatomy in both human and mouse, mappings between homologous structures in human and mouse, and associated malformations. We describe these modules, as well as prototype uses of the OCDM for integrating craniofacial data. By using the terms from the OCDM to annotate data, and by combining queries over the ontology with those over annotated data, it becomes possible to create “intelligent” queries that can, for example, find gene expression data obtained from mouse structures that are precursors to homologous human structures involved in malformations such as cleft lip. We suggest that the OCDM can be useful not only for integrating craniofacial data, but also for expressing new knowledge gained from analyzing the integrated data


Journal of Biomedical Informatics | 2009

Content-specific auditing of a large scale anatomy ontology

Ira J. Kalet; Jose L. V. Mejino; Vania Wang; Mark Whipple; James F. Brinkley

Biomedical ontologies are envisioned to be usable in a range of research and clinical applications. The requirements for such uses include formal consistency, adequacy of coverage, and possibly other domain specific constraints. In this report we describe a case study that illustrates how application specific requirements may be used to identify modeling problems as well as data entry errors in ontology building and evolution. We have begun a project to use the UW Foundational Model of Anatomy (FMA) in a clinical application in radiation therapy planning. This application focuses mainly (but not exclusively) on the representation of the lymphatic system in the FMA, in order to predict the spread of tumor cells to regional metastatic sites. This application requires that the downstream relations associated with lymphatic system components must only be to other lymphatic chains or vessels, must be at the appropriate level of granularity, and that every path through the lymphatic system must terminate at one of the two well known trunks of the lymphatic system. It is possible through a programmable query interface to the FMA to write small programs that systematically audit the FMA for compliance with these constraints. We report on the design of some of these programs, and the results we obtained by applying them to the lymphatic system. The algorithms and approach are generalizable to other network organ systems in the FMA such as arteries and veins. In addition to illustrating exact constraint checking methods, this work illustrates how the details of an application may reflect back a requirement to revise the design of the ontology itself.


Journal of Biomedical Informatics | 2012

Ontological labels for automated location of anatomical shape differences

Shane Steinert-Threlkeld; Siamak Ardekani; Jose L. V. Mejino; Landon T. Detwiler; James F. Brinkley; Michael Halle; Ron Kikinis; Raimond L. Winslow; Michael I. Miller; J. Tilak Ratnanather

A method for automated location of shape differences in diseased anatomical structures via high resolution biomedical atlases annotated with labels from formal ontologies is described. In particular, a high resolution magnetic resonance image of the myocardium of the human left ventricle was segmented and annotated with structural terms from an extracted subset of the Foundational Model of Anatomy ontology. The atlas was registered to the end systole template of a previous study of left ventricular remodeling in cardiomyopathy using a diffeomorphic registration algorithm. The previous study used thresholding and visual inspection to locate a region of statistical significance which distinguished patients with ischemic cardiomyopathy from those with nonischemic cardiomyopathy. Using semantic technologies and the deformed annotated atlas, this location was more precisely found. Although this study used only a cardiac atlas, it provides a proof-of-concept that ontologically labeled biomedical atlases of any anatomical structure can be used to automate location-based inferences.


Radiographics | 2015

Ontology-based Image Navigation: Exploring 3.0-T MR Neurography of the Brachial Plexus Using AIM and RadLex

Kenneth C. Wang; Aditya R. Salunkhe; James J. Morrison; Pearlene P. Lee; Jose L. V. Mejino; Landon T. Detwiler; James F. Brinkley; Eliot L. Siegel; Daniel L. Rubin; John A. Carrino

Disorders of the peripheral nervous system have traditionally been evaluated using clinical history, physical examination, and electrodiagnostic testing. In selected cases, imaging modalities such as magnetic resonance (MR) neurography may help further localize or characterize abnormalities associated with peripheral neuropathies, and the clinical importance of such techniques is increasing. However, MR image interpretation with respect to peripheral nerve anatomy and disease often presents a diagnostic challenge because the relevant knowledge base remains relatively specialized. Using the radiology knowledge resource RadLex®, a series of RadLex queries, the Annotation and Image Markup standard for image annotation, and a Web services-based software architecture, the authors developed an application that allows ontology-assisted image navigation. The application provides an image browsing interface, allowing users to visually inspect the imaging appearance of anatomic structures. By interacting directly with the images, users can access additional structure-related information that is derived from RadLex (eg, muscle innervation, muscle attachment sites). These data also serve as conceptual links to navigate from one portion of the imaging atlas to another. With 3.0-T MR neurography of the brachial plexus as the initial area of interest, the resulting application provides support to radiologists in the image interpretation process by allowing efficient exploration of the MR imaging appearance of relevant nerve segments, muscles, bone structures, vascular landmarks, anatomic spaces, and entrapment sites, and the investigation of neuromuscular relationships.


Journal of the American Medical Informatics Association | 2004

Processes and Problems in the Formative Evaluation of an Interface to the Foundational Model of Anatomy Knowledge Base

Linda G. Shapiro; Emily Chung; Landon T. Detwiler; Jose L. V. Mejino; Augusto V. Agoncillo; James F. Brinkley; Cornelius Rosse

The Digital Anatomist Foundational Model of Anatomy (FMA) is a large semantic network of more than 100,000 terms that refer to the anatomical entities, which together with 1.6 million structural relationships symbolically represent the physical organization of the human body. Evaluation of such a large knowledge base by domain experts is challenging because of the sheer size of the resource and the need to evaluate not just classes but also relationships. To meet this challenge, the authors have developed a relation-centric query interface, called Emily, that is able to query the entire range of classes and relationships in the FMA, yet is simple to use by a domain expert. Formative evaluation of this interface considered the ability of Emily to formulate queries based on standard anatomy examination questions, as well as the processing speed of the query engine. Results show that Emily is able to express 90% of the examination questions submitted to it and that processing time is generally 1 second or less, but can be much longer for complex queries. These results suggest that Emily will be a very useful tool, not only for evaluating the FMA, but also for querying and evaluating other large semantic networks.

Collaboration


Dive into the Jose L. V. Mejino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Cook

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge