Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José León is active.

Publication


Featured researches published by José León.


Plant Physiology | 2010

Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis

Jorge Lozano-Juste; José León

Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense.


Molecular Cell | 2014

Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors

Daniel J. Gibbs; Nurulhikma Md Isa; Mahsa Movahedi; Jorge Lozano-Juste; Guillermina M. Mendiondo; Sophie Berckhan; Nora Marín-de la Rosa; Jorge Vicente Conde; Cristina Sousa Correia; Simon P. Pearce; George W. Bassel; Bulut Hamali; Prabhavathi Talloji; Daniel F. A. Tomé; Alberto Coego; Jim Beynon; David Alabadí; Andreas Bachmair; José León; Julie E. Gray; Frederica L. Theodoulou; Michael J. Holdsworth

Summary Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.


Journal of Experimental Botany | 2011

In vivo protein tyrosine nitration in Arabidopsis thaliana

Jorge Lozano-Juste; Rosa Colom-Moreno; José León

Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-down potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography–mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3-phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287.


Plant Physiology | 2004

Gene-Specific Involvement of β-Oxidation in Wound-Activated Responses in Arabidopsis

M. Cruz Castillo; Cristina Martínez; Antony Buchala; Jean-Pierre Métraux; José León

The coordinated induced expression of β-oxidation genes is essential to provide the energy supply for germination and postgerminative development. However, very little is known about other functions of β-oxidation in nonreserve organs. We have identified a gene-specific pattern of induced β-oxidation gene expression in wounded leaves of Arabidopsis. Mechanical damage triggered the local and systemic induction of only ACX1 among acyl-coenzyme A oxidase (ACX) genes, and KAT2/PED1 among 3-ketoacyl-coenzyme A thiolase (KAT) genes in Arabidopsis. In turn, wounding induced KAT5/PKT2 only systemically. Although most of the β-oxidation genes were activated by wound-related factors such as dehydration and abscisic acid, jasmonic acid (JA) induced only ACX1 and KAT5. Reduced expression of ACX1 or KAT2 genes, in transgenic plants expressing their corresponding mRNAs in antisense orientation, correlated with defective wound-activated synthesis of JA and with reduced expression of JA-responsive genes. Induced expression of JA-responsive genes by exogenous application of JA was unaffected in those transgenic plants, suggesting that ACX1 and KAT2 play a major role in driving wound-activated responses by participating in the biosynthesis of JA in wounded Arabidopsis plants.


PLOS Pathogens | 2011

A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

Floriane L'Haridon; Angélique Besson-Bard; Matteo Binda; Mario Serrano; Eliane Abou-Mansour; Francine Balet; Henk-jan Schoonbeek; Stephane Hess; Ricardo Mir; José León; Olivier Lamotte; Jean-Pierre Métraux

Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2 −, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses.


Plant Physiology | 2011

Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis

Jorge Lozano-Juste; José León

The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidopsis thaliana) NO-deficient mutant hypocotyls are longer than those from wild-type seedlings under red light but not under blue or far-red light. Accordingly, exogenous treatment with the NO donor sodium nitroprusside and mutant plants with increased endogenous NO levels resulted in reduced hypocotyl length. In addition to increased hypocotyl elongation, NO deficiency led to increased anthocyanin levels and reduced PHYB content under red light, all processes governed by phytochrome-interacting factors (PIFs). NO-deficient plants accordingly showed an enhanced expression of PIF3, PIF1, and PIF4. Moreover, exogenous NO increased the levels of the gibberellin (GA)-regulated DELLA proteins and shortened hypocotyls, likely through the negative regulation of the GA Insensitive Dwarf1 (GID1)-Sleepy1 (SLY1) module. Consequently, NO-deficient seedlings displayed up-regulation of SLY1, defective DELLA accumulation, and altered GA sensitivity, thus resulting in defective deetiolation under red light. Accumulation of NO in wild-type seedlings undergoing red light-triggered deetiolation and elevated levels of NO in the GA-deficient ga1-3 mutant in darkness suggest a mutual NO-GA antagonism in controlling photomorphogenesis. PHYB-dependent NO production promotes photomorphogenesis by a GID1-GA-SLY1-mediated mechanism based on the coordinated repression of growth-promoting PIF genes and the increase in the content of DELLA proteins.


Annals of Botany | 2011

Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings

Andrea Pető; Nóra Lehotai; Jorge Lozano-Juste; José León; Irma Tari; László Erdei; Zsuzsanna Kolbert

BACKGROUND AND AIMS Plants are able to adapt to the environment dynamically through regulation of their growth and development. Excess copper (Cu(2+)), a toxic heavy metal, induces morphological alterations in plant organs; however, the underlying mechanisms are still unclear. With this in mind, the multiple signalling functions of nitric oxide (NO) in plant cells and its possible regulatory role and relationship with auxin were examined during Cu(2+)-induced morphological responses. METHODS Endogenous auxin distribution was determined by microscopic observation of X-Gluc-stained DR5::GUS arabidopsis, and the levels of NO, superoxide and peroxynitrite were detected by fluorescence microscopy. As well as wild-type, NO-overproducer (nox1) and -deficient (nia1nia2 and nia1nia2noa1-2) arabidopsis plants were used. KEY RESULTS Cu(2+) at a concentration of 50 µm resulted in a large reduction in cotyledon area and hypocotyl and primary root lengths, accompanied by an increase in auxin levels. In cotyledons, a low Cu(2+) concentration promoted NO accumulation, which was arrested by nitric oxide synthase or nitrate reductase inhibitors. The 5-μm Cu(2+)-induced NO synthesis was not detectable in nia1nia2 or nia1nia2noa1-2 plants. In roots, Cu(2+) caused a decrease of the NO level which was not associated with superoxide and peroxynitrite formation. Inhibition of auxin transport resulted in an increase in NO levels, while exogenous application of an NO donor reduced DR5::GUS expression. The elongation processes of nox1 were not sensitive to Cu(2+), but NO-deficient plants showed diverse growth responses. CONCLUSIONS In plant organs, Cu(2+) excess results in severe morphological responses during which the endogenous hormonal balance and signal transduction are affected. Auxin and NO negatively regulate each others level and NO intensifies the metal-induced cotyledon expansion, but mitigates elongation processes under Cu(2+) exposure.


Current Biology | 2015

Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival

Mohamad Abbas; Sophie Berckhan; Daniel J. Rooney; Daniel J. Gibbs; Jorge Vicente Conde; Cristina Sousa Correia; George W. Bassel; Nora Marín-de la Rosa; José León; David Alabadí; Miguel A. Blázquez; Michael J. Holdsworth

Summary Successful emergence from the soil is essential for plant establishment in natural and farmed systems. It has been assumed that the absence of light in the soil is the preeminent signal perceived during early seedling development, leading to a distinct morphogenic plan (skotomorphogenesis) [1], characterized by traits providing an adaptive advantage until emergence and photomorphogenesis. These traits include suppressed chlorophyll synthesis, promotion of hypocotyl elongation, and formation of a closed apical hook that protects the stem cell niche from damage [2, 3]. However, absence of light by itself is not a sufficient environmental signal for early seedling development [4, 5]. Reduced oxygen levels (hypoxia) can occur in water-logged soils [6–8]. We therefore hypothesized that below-ground hypoxia may be an important, but thus far undiscovered, ecological component regulating seedling development. Here, we show that survival and establishment of seedlings following darkness depend on their ability to sense hypoxia, through enhanced stability of group VII Ethylene Response Factor (ERFVII) transcription factors. Hypoxia is perceived as a positive environmental component in diverse taxa of flowering plants, promoting maintenance of skotomorphogenic traits. Hypoxia greatly enhances survival once light is perceived, while oxygen is necessary for the subsequent effective completion of photomorphogenesis. Together with light perception, oxygen sensing therefore allows an integrated response to the complex and changing physical microenvironment encountered during early seedling growth. We propose that plants monitor the soil’s gaseous environment after germination, using hypoxia as a key external cue to protect the stem cell niche, thus ensuring successful rapid establishment upon emergence above ground.


Journal of Experimental Botany | 2014

Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress

José León; Mari Cruz Castillo; Alberto Coego; Jorge Lozano-Juste; Ricardo Mir

The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.


Science Signaling | 2015

Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants

Mari-Cruz Castillo; Jorge Lozano-Juste; Miguel González-Guzmán; Lesia Rodriguez; Pedro L. Rodriguez; José León

Nitric oxide may limit ABA signaling in plants by rapid inactivation of the receptors through tyrosine nitration. NO more ABA activity Abscisic acid (ABA) is a critical plant hormone, controlling developmental processes and immune responses. Long-term regulation of ABA signaling involves changes in gene expression that reduce ABA synthesis and enhance ABA metabolism. Castillo et al. found that various members of the ABA receptor PYR/PYL/RCAR family were modified posttranslationally by tyrosine nitration or S-nitrosylation at cysteine residues, two covalent modifications that can result from increased nitric oxide (NO). These NO-mediated modifications and polyubiquitylation, which target proteins for degradation, occurred in a complex, potentially interconnected, and receptor-specific pattern in plants overexpressing individual receptors. Tyrosine nitration, but not S-nitrosylation, inhibited ABA-induced activity in vitro, suggesting that tyrosine nitration may be a mechanism to rapidly tune the cellular responsiveness to ABA. Abscisic acid (ABA) is a phytohormone that inhibits growth and enhances adaptation to stress in plants. ABA perception and signaling rely on its binding to receptors of the pyrabactin resistance1/PYR1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) family, the subsequent inhibition of clade A type 2C protein phosphatases (PP2Cs), and the phosphorylation of ion channels and transcription factors by protein kinases of the SnRK2 family. Nitric oxide (NO) may inhibit ABA signaling because NO-deficient plants are hypersensitive to ABA. Regulation by NO often involves posttranslational modification of proteins. Mass spectrometry analysis of ABA receptors expressed in plants and recombinant receptors modified in vitro revealed that the receptors were nitrated at tyrosine residues and S-nitrosylated at cysteine residues. In an in vitro ABA-induced, PP2C inhibition assay, tyrosine nitration reduced receptor activity, whereas S-nitrosylated receptors were fully capable of ABA-induced inhibition of the phosphatase. PYR/PYL/RCAR proteins with nitrated tyrosine, which is an irreversible covalent modification, were polyubiquitylated and underwent proteasome-mediated degradation. We propose that tyrosine nitration, which requires NO and superoxide anions, is a rapid mechanism by which NO limits ABA signaling under conditions in which NO and reactive oxygen species are both produced.

Collaboration


Dive into the José León's collaboration.

Top Co-Authors

Avatar

Jorge Lozano-Juste

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mari-Cruz Castillo

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ricardo Mir

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Alberto Coego

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Martínez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

David Alabadí

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Lesia Rodriguez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Miguel González-Guzmán

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Nora Marín-de la Rosa

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge