Ramón Pelagio-Flores
Universidad Michoacana de San Nicolás de Hidalgo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramón Pelagio-Flores.
Journal of Pineal Research | 2012
Ramón Pelagio-Flores; Edith Muñoz-Parra; Randy Ortiz-Castro; José López-Bucio
Abstract: Melatonin (N‐acetyl‐5‐methoxytryptamine) is a tryptophan‐derived signal with important physiological roles in mammals. Although the presence of melatonin in plants may be universal, its endogenous function in plant tissues is unknown. On the basis of its structural similarity to indole‐3‐acetic acid, recent studies mainly focusing on root growth in several plant species have suggested a potential auxin‐like activity of melatonin. However, direct evidence about the mechanisms of action of this regulator is lacking. In this work, we used Arabidopsis thaliana seedlings as a model system to evaluate the effects of melatonin on plant growth and development. Melatonin modulated root system architecture by stimulating lateral and adventitious root formation but minimally affected primary root growth or root hair development. The auxin activity of melatonin in roots was investigated using the auxin‐responsive marker constructs DR5:uidA, BA3:uidA, and HS::AXR3NT‐GUS. Our results show that melatonin neither activates auxin‐inducible gene expression nor induces the degradation of HS::AXR3NT‐GUS, indicating that root developmental changes elicited by melatonin were independent of auxin signaling. Taken together, our results suggest that melatonin is beneficial to plants by increasing root branching and that root development processes elicited by this novel plant signal are likely independent of auxin responses.
Plant and Cell Physiology | 2011
Ramón Pelagio-Flores; Randy Ortiz-Castro; Alfonso Méndez-Bravo; Lourdes Macías-Rodríguez; José López-Bucio
Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter in mammals and is widely distributed in plants. This compound is synthesized from tryptophan and shares structural similarity with IAA. To date, little is known about the morphological, physiological and molecular responses of plants to serotonin. In this study, we characterized the effects of serotonin on growth and development in Arabidopsis thaliana seedlings. Gas chromatography-mass spectrometry (GC-MS) analysis showed that plants are able to take up serotonin from the growth medium, which coincided with greatly stimulated lateral root development at concentrations from 10 to 160 μM. In contrast, higher doses of serotonin repressed lateral root growth, primary root growth and root hair development, but stimulated adventitious root formation. To investigate the role of serotonin in modulating auxin responses, we performed experiments using transgenic Arabidopsis lines expressing the auxin-responsive marker constructs DR5:uidA, BA3:uidA and HS::AXR3NT-GUS, as well as a variety of Arabidopsis mutants defective at the AUX1, AXR1, AXR2 and AXR4 auxin-related loci. We found that serotonin strongly inhibited both DR5:uidA and BA3:uidA gene expression in primary and adventitious roots and in lateral root primordia. This compound also abolished the effects of IAA or naphthaleneacetic acid on auxin-regulated developmental and genetic responses, indicating an anti-auxin activity in the plant. Mutant analysis further showed that lateral root induction elicited by serotonin was independent of the AUX1 and AXR4 loci but required AXR1 and AXR2. Our results show that serotonin regulates root development probably by acting as a natural auxin inhibitor.
Journal of Plant Physiology | 2012
Javier Raya-González; Ramón Pelagio-Flores; José López-Bucio
Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type (WT) seedlings. It was observed that the coi1-1 mutant was less sensitive to JA on pericycle cell activation to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and BA3:uidA in WT and coi1-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect DR5:uidA and BA3:uidA expression in WT and coi1-1 seedlings. Our data also showed that PR growth inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP required ARF7, ARF19, SLR, TIR1, AFB2, AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic root development involves both auxin-dependent and independent mechanisms.
Plant Physiology | 2010
Alina Morquecho-Contreras; Alfonso Méndez-Bravo; Ramón Pelagio-Flores; Javier Raya-González; Randy Ortiz-Castro; José López-Bucio
Alkamides belong to a class of small lipid signals of wide distribution in plants, which are structurally related to the bacterial quorum-sensing signals N-acyl-l-homoserine lactones. Arabidopsis (Arabidopsis thaliana) seedlings display a number of root developmental responses to alkamides, including primary root growth inhibition and greater formation of lateral roots. To gain insight into the regulatory mechanisms by which these compounds alter plant development, we performed a mutant screen for identifying Arabidopsis mutants that fail to inhibit primary root growth when grown under a high concentration of N-isobutyl decanamide. A recessive N-isobutyl decanamide-resistant mutant (decanamide resistant root [drr1]) was isolated because of its continued primary root growth and reduced lateral root formation in response to this alkamide. Detailed characterization of lateral root primordia development in the wild type and drr1 mutants revealed that DRR1 is required at an early stage of pericycle cell activation to form lateral root primordia in response to both N-isobutyl decanamide and N-decanoyl-l-homoserine lactone, a highly active bacterial quorum-sensing signal. Exogenously supplied auxin similarly inhibited primary root growth and promoted lateral root formation in wild-type and drr1 seedlings, suggesting that alkamides and auxin act by different mechanisms to alter root system architecture. When grown both in vitro and in soil, drr1 mutants showed dramatically increased longevity and reduced hormone- and age-dependent senescence, which were related to reduced lateral root formation when exposed to stimulatory concentrations of jasmonic acid. Taken together, our results provide genetic evidence indicating that alkamides and N-acyl-l-homoserine lactones can be perceived by plants to modulate root architecture and senescence-related processes possibly by interacting with jasmonic acid signaling.
Molecular Plant-microbe Interactions | 2014
Randy Ortiz-Castro; Ramón Pelagio-Flores; Alfonso Méndez-Bravo; León Francisco Ruiz-Herrera; Jesús Campos-García; José López-Bucio
Pyocyanin acts as a virulence factor in Pseudomonas aeruginosa, a plant and animal pathogen. In this study, we evaluated the effect of pyocyanin on growth and development of Arabidopsis seedlings. Root inoculation with P. aeruginosa PAO1 strain inhibited primary root growth in wild-type (WT) Arabidopsis seedlings. In contrast, single lasI- and double rhlI-/lasI- mutants of P. aeruginosa defective in pyocyanin production showed decreased root growth inhibition concomitant with an increased phytostimulation. Treatment with pyocyanin modulates root system architecture, inhibiting primary root growth and promoting lateral root and root hair formation without affecting meristem viability or causing cell death. These effects correlated with altered proportions of hydrogen peroxide and superoxide in root tips and with an inhibition of cell division and elongation. Mutant analyses showed that pyocyanin modulation of root growth was likely independent of auxin, cytokinin, and abscisic acid but required ethylene signaling because the Arabidopsis etr1-1, ein2-1, and ein3-1 ethylene-related mutants were less sensitive to pyocyanin-induced root stoppage and reactive oxygen species (ROS) distribution. Our findings suggest that pyocyanin is an important factor modulating the interplay between ROS production and root system architecture by an ethylene-dependent signaling.
Frontiers in Plant Science | 2017
Ramón Pelagio-Flores; Saraí Esparza-Reynoso; Amira Garnica-Vergara; José López-Bucio; Alfredo Herrera-Estrella
Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants.
Plant Cell and Environment | 2017
Edith Muñoz-Parra; Ramón Pelagio-Flores; Javier Raya-González; León Francisco Ruiz-Herrera; Eduardo Valencia-Cantero; José López-Bucio
Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition.
Plant Molecular Biology | 2013
Ramón Pelagio-Flores; Randy Ortiz-Castro; José López-Bucio
The control of cell division by growth regulators is critical to proper shoot and root development. Alkamides belong to a class of small lipid amides involved in plant morphogenetic processes, from which N-isobutyl decanamide is one of the most active compounds identified. This work describes the isolation and characterization of an N-isobutyl decanamide-hypersensitive (dhm1) mutant of Arabidopsis (Arabidopsis thaliana). dhm1 seedlings grown in vitro develop disorganized tumorous tissue in petioles, leaves and stems. N-isobutyl decanamide treatment exacerbates the dhm1 phenotype resulting in widespread production of callus-like structures in the mutant. Together with these morphological alterations in shoot, dhm1 seedlings sustained increased lateral root formation and greater sensitivity to alkamides in the inhibition of primary root growth. The mutants also show reduced etiolation when grown in darkness. When grown in soil, adult dhm1 plants were characterized by reduced plant size, and decreased fertility. Genetic analysis indicated that the mutant phenotype segregates as a single recessive Mendelian trait. Developmental alterations in dhm1 were related to an enhanced expression of the cell division marker CycB1-uidA both in the shoot and root system, which correlated with altered expression of auxin and cytokinin responsive gene markers. Pharmacological inhibition of auxin transport decreased LR formation in WT and dhm1 seedlings in a similar manner, indicating that auxin transport is involved in the dhm1 root phenotype. These data show an important role of alkamide signaling in cell proliferation and plant architecture remodeling likely acting through the DHM1 protein.
Plant Science | 2008
Juan Carlos Campos-Cuevas; Ramón Pelagio-Flores; Javier Raya-González; Alfonso Méndez-Bravo; Randy Ortiz-Castro; José López-Bucio
Scientia Horticulturae | 2015
José López-Bucio; Ramón Pelagio-Flores; Alfredo Herrera-Estrella