Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Lourenço is active.

Publication


Featured researches published by José Lourenço.


Science | 2016

Zika virus in the Americas: Early epidemiological and genetic findings

Nuno Rodrigues Faria; Raimunda do Socorro da Silva Azevedo; Moritz U. G. Kraemer; Renato Souza; Mariana Sequetin Cunha; Sarah C. Hill; Julien Thézé; Michael B. Bonsall; Thomas A. Bowden; Ilona Rissanen; Iray Maria Rocco; Juliana Silva Nogueira; Adriana Yurika Maeda; Fernanda Giseli da Silva Vasami; Fernando Luiz de Lima Macedo; Akemi Suzuki; Sueli Guerreiro Rodrigues; Ana Cecília Ribeiro Cruz; Bruno Tardeli Nunes; Daniele Barbosa de Almeida Medeiros; Daniela Sueli Guerreiro Rodrigues; Alice Louize Nunes Queiroz; Eliana Vieira Pinto da Silva; Daniele Freitas Henriques; Elisabeth Salbe Travassos da Rosa; Consuelo Silva de Oliveira; Lívia Carício Martins; Helena Baldez Vasconcelos; L. M. N. Casseb; Darlene de Brito Simith

Zika virus genomes from Brazil The Zika virus outbreak is a major cause for concern in Brazil, where it has been linked with increased reports of otherwise rare birth defects and neuropathology. In a phylogenetic analysis, Faria et al. infer a single introduction of Zika to the Americas and estimated the introduction date to be about May to December 2013—some 12 months earlier than the virus was reported. This timing correlates with major events in the Brazilian cultural calendar associated with increased traveler numbers from areas where Zika virus has been circulating. A correlation was also observed between incidences of microcephaly and week 17 of pregnancy. Science, this issue p. 345 Virus sequencing indicates that Zika arrived in Brazil during the middle of 2013, coincident with a surge in air travelers. Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.


PLOS Medicine | 2016

The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study.

Stefan Flasche; Mark Jit; Isabel Rodriguez-Barraquer; Laurent Coudeville; Mario Recker; Katia Koelle; George Milne; Thomas J. Hladish; T. Alex Perkins; Derek A. T. Cummings; Ilaria Dorigatti; Daniel J. Laydon; Guido Espana; Joel Kelso; Ira M. Longini; José Lourenço; Carl A. B. Pearson; Robert C. Reiner; Luis Mier-y-Teran-Romero; Kirsten Vannice; Neil M. Ferguson

Background Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. Methods and Findings The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%–25% (all simulations: –3%–34%) and in high-transmission settings (SP9 ≥ 70%) by 13%–25% (all simulations: 10%– 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively. The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines. Conclusions Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.


PLOS Neglected Tropical Diseases | 2014

The 2012 Madeira Dengue Outbreak: Epidemiological Determinants and Future Epidemic Potential

José Lourenço; Mario Recker

Dengue, a vector-borne viral disease of increasing global importance, is classically associated with tropical and sub-tropical regions around the world. Urbanisation, globalisation and climate trends, however, are facilitating the geographic spread of its mosquito vectors, thereby increasing the risk of the virus establishing itself in previously unaffected areas and causing large-scale epidemics. On 3 October 2012, two autochthonous dengue infections were reported within the Autonomous Region of Madeira, Portugal. During the following seven months, this first ‘European’ dengue outbreak caused more than 2000 local cases and 81 exported cases to mainland Europe. Here, using an ento-epidemiological mathematical framework, we estimate that the introduction of dengue to Madeira occurred around a month before the first official cases, during the period of maximum influx of airline travel, and that the naturally declining temperatures of autumn were the determining factor for the outbreaks demise in early December 2012. Using key estimates, together with local climate data, we further propose that there is little support for dengue endemicity on this island, but a high potential for future epidemic outbreaks when seeded between May and August—a period when detection of imported cases is crucial for Madeiras public health planning.


PLOS Neglected Tropical Diseases | 2010

Viral and Epidemiological Determinants of the Invasion Dynamics of Novel Dengue Genotypes

José Lourenço; Mario Recker

Background Dengue has become a major concern for international public health. Frequent epidemic outbreaks are believed to be driven by a complex interplay of immunological interactions between its four co-circulating serotypes and large fluctuations in mosquito densities. Viral lineage replacement events, caused for example by different levels of cross-protection or differences in viral fitness, have also been linked to a temporary change in dengue epidemiology. A major replacement event was recently described for South-East Asia where the Asian-1 genotype of dengue serotype 2 replaced the resident Asian/American type. Although this was proposed to be due to increased viral fitness in terms of enhanced human-to-mosquito transmission, no major change in dengue epidemiology could be observed. Methods/Results Here we investigate the invasion dynamics of a novel, advantageous dengue genotype within a model system and determine the factors influencing the success and rate of fixation as well as their epidemiological consequences. We find that while viral fitness overall correlates with invasion success and competitive exclusion of the resident genotype, the epidemiological landscape plays a more significant role for successful emergence. Novel genotypes can thus face high risks of stochastic extinction despite their fitness advantage if they get introduced during episodes of high dengue prevalence, especially with respect to that particular serotype. Conclusion The rarity of markers for positive selection has often been explained by strong purifying selection whereby the constraints imposed by dengues two-host cycle are expected to result in a high rate of deleterious mutations. Our results demonstrate that even highly beneficial mutants are under severe threat of extinction, which would suggest that apart from purifying selection, stochastic effects and genetic drift beyond seasonal bottlenecks are equally important in shaping dengues viral ecology and evolution.


PLOS Currents | 2016

Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014-2015.

Nuno Rodrigues Faria; José Lourenço; Erenilde Marques de Cerqueira; Maricélia Maia de Lima; Oliver G. Pybus; Luiz Carlos Junior Alcantara

Chikungunya is an emerging arbovirus that is characterized into four lineages. One of these, the Asian genotype, has spread rapidly in the Americas after its introduction in the Saint Martin island in October 2013. Unexpectedly, a new lineage, the East-Central-South African genotype, was introduced from Angola in the end of May 2014 in Feira de Santana (FSA), the second largest city in Bahia state, Brazil, where over 5,500 cases have now been reported. Number weekly cases of clinically confirmed CHIKV in FSA were analysed alongside with urban district of residence of CHIKV cases reported between June 2014 and October collected from the municipality’s surveillance network. The number of cases per week from June 2014 until September 2015 reveals two distinct transmission waves. The first wave ignited in June and transmission ceased by December 2014. However, a second transmission wave started in January and peaked in May 2015, 8 months after the first wave peak, and this time in phase with Dengue virus and Zika virus transmission, which ceased when minimum temperature dropped to approximately 15°C. We find that shorter travelling times from the district where the outbreak first emerged to other urban districts of FSA were strongly associated with incidence in each district in 2014 (R2).


PLOS Computational Biology | 2013

Natural, Persistent Oscillations in a Spatial Multi-Strain Disease System with Application to Dengue

José Lourenço; Mario Recker

Many infectious diseases are not maintained in a state of equilibrium but exhibit significant fluctuations in prevalence over time. For pathogens that consist of multiple antigenic types or strains, such as influenza, malaria or dengue, these fluctuations often take on the form of regular or irregular epidemic outbreaks in addition to oscillatory prevalence levels of the constituent strains. To explain the observed temporal dynamics and structuring in pathogen populations, epidemiological multi-strain models have commonly evoked strong immune interactions between strains as the predominant driver. Here, with specific reference to dengue, we show how spatially explicit, multi-strain systems can exhibit all of the described epidemiological dynamics even in the absence of immune competition. Instead, amplification of natural stochastic differences in disease transmission, can give rise to persistent oscillations comprising semi-regular epidemic outbreaks and sequential dominance of dengues four serotypes. Not only can this mechanism explain observed differences in serotype and disease distributions between neighbouring geographical areas, it also has important implications for inferring the nature and epidemiological consequences of immune mediated competition in multi-strain pathogen systems.


eLife | 2017

Epidemiological and ecological determinants of Zika virus transmission in an urban setting

José Lourenço; Maricélia Maia de Lima; Nuno Rodrigues Faria; Andrew Walker; Moritz U. G. Kraemer; Christian Julian Villabona-Arenas; Ben Lambert; Erenilde Marques de Cerqueira; Oliver G. Pybus; Luiz Cj Alcantara; Mario Recker

The Zika virus has emerged as a global public health concern. Its rapid geographic expansion is attributed to the success of Aedes mosquito vectors, but local epidemiological drivers are still poorly understood. Feira de Santana played a pivotal role in the Chikungunya epidemic in Brazil and was one of the first urban centres to report Zika infections. Using a climate-driven transmission model and notified Zika case data, we show that a low observation rate and high vectorial capacity translated into a significant attack rate during the 2015 outbreak, with a subsequent decline in 2016 and fade-out in 2017 due to herd-immunity. We find a potential Zika-related, low risk for microcephaly per pregnancy, but with significant public health impact given high attack rates. The balance between the loss of herd-immunity and viral re-importation will dictate future transmission potential of Zika in this urban setting.


Infection, Genetics and Evolution | 2016

Zika virus complete genome from Salvador, Bahia, Brazil.

Marta Giovanetti; Nuno Rodrigues Faria; Márcio Roberto Teixeira Nunes; Janaina Mota de Vasconcelos; José Lourenço; Sueli Guerreiro Rodrigues; João Vianez; Sandro Patroca da Silva; Poliana da Silva Lemos; Fernando Neto Tavares; Darren P. Martin; Mateus Santana do Rosário; Isadora Siqueira; Massimo Ciccozzi; Oliver G. Pybus; Tulio de Oliveira; Luiz Carlos Junior Alcantara

In May 2015 the first autochthonous Zika virus infection was reported in Brazil. Rapid and urgent measures are needed to contain the ongoing outbreak. Here we report the full-length ZIKV coding sequence from Bahia. Genetic analysis of outbreak sequences will be essential for characterizing the diversity of circulating strains, identifying hotspots of virus transmission and guiding public health control. Rapid and urgent measures are needed to contain the ongoing outbreak.


PLOS Pathogens | 2015

Vaccination Drives Changes in Metabolic and Virulence Profiles of Streptococcus pneumoniae.

Eleanor R. Watkins; Bridget S. Penman; José Lourenço; Caroline O. Buckee; Martin C. J. Maiden; Sunetra Gupta

The bacterial pathogen, Streptococcus pneumoniae (the pneumococcus), is a leading cause of life-threatening illness and death worldwide. Available conjugate vaccines target only a small subset (up to 13) of >90 known capsular serotypes of S. pneumoniae and, since their introduction, increases in non-vaccine serotypes have been recorded in several countries: a phenomenon termed Vaccine Induced Serotype Replacement (VISR). Here, using a combination of mathematical modelling and whole genome analysis, we show that targeting particular serotypes through vaccination can also cause their metabolic and virulence-associated components to transfer through recombination to non-vaccine serotypes: a phenomenon we term Vaccine-Induced Metabolic Shift (VIMS). Our results provide a novel explanation for changes observed in the population structure of the pneumococcus following vaccination, and have important implications for strain-targeted vaccination in a range of infectious disease systems.


PLOS ONE | 2009

The Impact of IPTi and IPTc Interventions on Malaria Clinical Burden – In Silico Perspectives

Ricardo Aguas; José Lourenço; M. Gabriela M. Gomes; Lisa J. White

Background Clinical management of malaria is a major health issue in sub-Saharan Africa. New strategies based on intermittent preventive treatment (IPT) can tackle disease burden by simultaneously reducing frequency of infections and life-threatening illness in infants (IPTi) and children (IPTc), while allowing for immunity to build up. However, concerns as to whether immunity develops efficiently in treated individuals, and whether there is a rebound effect after treatment is halted, have made it imperative to define the effects that IPTi and IPTc exert on the clinical malaria scenario. Methods and Findings Here, we simulate several schemes of intervention under different transmission settings, while varying immunity build up assumptions. Our model predicts that infection risk and effectiveness of acquisition of clinical immunity under prophylactic effect are associated to intervention impact during treatment and follow-up periods. These effects vary across regions of different endemicity and are highly correlated with the interplay between the timing of interventions in age and the age dependent risk of acquiring an infection. However, even when significant rebound effects are predicted to occur, the overall intervention impact is positive. Conclusions IPTi is predicted to have minimal impact on the acquisition of clinical immunity, since it does not interfere with the occurrence of mild infections, thus failing to reduce the underlying force of infection. On the contrary, IPTc has a significant potential to reduce transmission, specifically in areas where it is already low to moderate.

Collaboration


Dive into the José Lourenço's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge