Mario Recker
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mario Recker.
Nature Genetics | 2005
Thomas N. Williams; Tabitha W. Mwangi; Sammy Wambua; Tim Peto; D. J. Weatherall; Sunetra Gupta; Mario Recker; Bridget S. Penman; Sophie Uyoga; Alex Macharia; Jedidah Mwacharo; Robert W. Snow; Kevin Marsh
The hemoglobinopathies, disorders of hemoglobin structure and production, protect against death from malaria. In sub-Saharan Africa, two such conditions occur at particularly high frequencies: presence of the structural variant hemoglobin S and α+-thalassemia, a condition characterized by reduced production of the normal α-globin component of hemoglobin. Individually, each is protective against severe Plasmodium falciparum malaria, but little is known about their malaria-protective effects when inherited in combination. We investigated this question by studying a population on the coast of Kenya and found that the protection afforded by each condition inherited alone was lost when the two conditions were inherited together, to such a degree that the incidence of both uncomplicated and severe P. falciparum malaria was close to baseline in children heterozygous with respect to the mutation underlying the hemoglobin S variant and homozygous with respect to the mutation underlying α+-thalassemia. Negative epistasis could explain the failure of α+-thalassemia to reach fixation in any population in sub-Saharan Africa.
Nature Medicine | 2011
Silvia Portugal; Celine Carret; Mario Recker; Andrew E. Armitage; Lígia Antunes Gonçalves; Sabrina Epiphanio; David J. Sullivan; Cindy N. Roy; Chris Newbold; Hal Drakesmith; Maria M. Mota
In regions of high rates of malaria transmission, mosquitoes repeatedly transmit liver-tropic Plasmodium sporozoites to individuals who already have blood-stage parasitemia. This manifests itself in semi-immune children (who have been exposed since birth to Plasmodium infection and as such show low levels of peripheral parasitemia but can still be infected) older than 5 years of age by concurrent carriage of different parasite genotypes at low asymptomatic parasitemias. Superinfection presents an increased risk of hyperparasitemia and death in less immune individuals but counterintuitively is not frequently observed in the young. Here we show in a mouse model that ongoing blood-stage infections, above a minimum threshold, impair the growth of subsequently inoculated sporozoites such that they become growth arrested in liver hepatocytes and fail to develop into blood-stage parasites. Inhibition of the liver-stage infection is mediated by the host iron regulatory hormone hepcidin, whose synthesis we found to be stimulated by blood-stage parasites in a density-dependent manner. We mathematically modeled this phenomenon and show how density-dependent protection against liver-stage malaria can shape the epidemiological patterns of age-related risk and the complexity of malaria infections seen in young children. The interaction between these two Plasmodium stages and host iron metabolism has relevance for the global efforts to reduce malaria transmission and for evaluation of iron supplementation programs in malaria-endemic regions.
Nature | 2004
Mario Recker; Sean Nee; Peter C. Bull; Sam Kinyanjui; Kevin Marsh; Chris Newbold; Sunetra Gupta
The malaria parasite Plasmodium falciparum has evolved to prolong its duration of infection by antigenic variation of a major immune target on the surface of the infected red blood cell. This immune evasion strategy depends on the sequential, rather than simultaneous, appearance of immunologically distinct variants. Although the molecular mechanisms by which a single organism switches between variants are known in part, it remains unclear how an entire population of parasites within the host can synchronize expression to avoid rapidly exhausting the variant repertoire. Here we show that short-lived, partially cross-reactive immune responses to parasite-infected erythrocyte surface antigens can produce a cascade of sequentially dominant antigenic variants, each of which is the most immunologically distinct from its preceding types. This model reconciles several previously unexplained and apparently conflicting epidemiological observations by demonstrating that individuals with stronger cross-reactive immune responses can, paradoxically, be more likely to sustain chronic infections. Antigenic variation has always been seen as an adaptation of the parasite to evade host defence: we show that the coordination necessary for the success of this strategy might be provided by the host.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Caroline O. Buckee; Keith A. Jolley; Mario Recker; Bridget S. Penman; Paula Kriz; Sunetra Gupta; Martin C. J. Maiden
Neisseria meningitis is a human commensal bacterium that occasionally causes life-threatening disease. As with a number of other bacterial pathogens, meningococcal populations comprise distinct lineages, which persist over many decades and during global spread in the face of high rates of recombination. In addition, the propensity to cause invasive disease is associated with particular “hyperinvasive” lineages that coexist with less invasive lineages despite the fact that disease does not contribute to host-to-host transmission. Here, by combining a modeling approach with molecular epidemiological data from 1,108 meningococci isolated in the Czech Republic over 27 years, we show that interstrain competition, mediated by immune selection, can explain both the persistence of multiple discrete meningococcal lineages and the association of a subset of these with invasive disease. The model indicates that the combinations of allelic variants of housekeeping genes that define these lineages are associated with very small differences in transmission efficiency among hosts. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009
Mario Recker; Konstantin B. Blyuss; Cameron P. Simmons; Tran Tinh Hien; Bridget Wills; Jeremy Farrar; Sunetra Gupta
Long-term epidemiological data reveal multi-annual fluctuations in the incidence of dengue fever and dengue haemorrhagic fever, as well as complex cyclical behaviour in the dynamics of the four serotypes of the dengue virus. It has previously been proposed that these patterns are due to the phenomenon of the so-called antibody-dependent enhancement (ADE) among dengue serotypes, whereby viral replication is increased during secondary infection with a heterologous serotype; however, recent studies have implied that this positive reinforcement cannot account for the temporal patterns of dengue and that some form of cross-immunity or external forcing is necessary. Here, we show that ADE alone can produce the observed periodicities and desynchronized oscillations of individual serotypes if its effects are decomposed into its two possible manifestations: enhancement of susceptibility to secondary infections and increased transmissibility from individuals suffering from secondary infections. This decomposition not only lowers the level of enhancement necessary for realistic disease patterns but also reduces the risk of stochastic extinction. Furthermore, our analyses reveal a time-lagged correlation between serotype dynamics and disease incidence rates, which could have important implications for understanding the irregular pattern of dengue epidemics.
Genome Research | 2014
Maisem Laabei; Mario Recker; Justine K. Rudkin; Mona Aldeljawi; Zeynep Gülay; Tim J. Sloan; Paul Williams; Jennifer L. Endres; Kenneth W. Bayles; Paul D. Fey; Vijaya Kumar Yajjala; Todd J. Widhelm; Erica Hawkins; Katie Lewis; Sara Parfett; Lucy Scowen; Sharon J. Peacock; Matthew T. G. Holden; Daniel J. Wilson; Timothy D. Read; Jean van den Elsen; Nicholas K. Priest; Edward J. Feil; Laurence D. Hurst; Elisabet Josefsson; Ruth C. Massey
Microbial virulence is a complex and often multifactorial phenotype, intricately linked to a pathogens evolutionary trajectory. Toxicity, the ability to destroy host cell membranes, and adhesion, the ability to adhere to human tissues, are the major virulence factors of many bacterial pathogens, including Staphylococcus aureus. Here, we assayed the toxicity and adhesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that while there was remarkably little variation in adhesion, toxicity varied by over an order of magnitude between isolates, suggesting different evolutionary selection pressures acting on these two traits. We performed a genome-wide association study (GWAS) and identified a large number of loci, as well as a putative network of epistatically interacting loci, that significantly associated with toxicity. Despite this apparent complexity in toxicity regulation, a predictive model based on a set of significant single nucleotide polymorphisms (SNPs) and insertion and deletions events (indels) showed a high degree of accuracy in predicting an isolates toxicity solely from the genetic signature at these sites. Our results thus highlight the potential of using sequence data to determine clinically relevant parameters and have further implications for understanding the microbial virulence of this opportunistic pathogen.
PLOS Pathogens | 2011
Mario Recker; Caroline O. Buckee; Andrew Serazin; Sue Kyes; Robert Pinches; Zoe Christodoulou; Amy L. Springer; Sunetra Gupta; Chris Newbold
Many pathogenic bacteria, fungi, and protozoa achieve chronic infection through an immune evasion strategy known as antigenic variation. In the human malaria parasite Plasmodium falciparum, this involves transcriptional switching among members of the var gene family, causing parasites with different antigenic and phenotypic characteristics to appear at different times within a population. Here we use a genome-wide approach to explore this process in vitro within a set of cloned parasite populations. Our analyses reveal a non-random, highly structured switch pathway where an initially dominant transcript switches via a set of switch-intermediates either to a new dominant transcript, or back to the original. We show that this specific pathway can arise through an evolutionary conflict in which the pathogen has to optimise between safeguarding its limited antigenic repertoire and remaining capable of establishing infections in non-naïve individuals. Our results thus demonstrate a crucial role for structured switching during the early phases of infections and provide a unifying theory of antigenic variation in P. falciparum malaria as a balanced process of parasite-intrinsic switching and immune-mediated selection.
Nature Reviews Microbiology | 2006
Ruth C. Massey; Malcolm J. Horsburgh; Gerard Lina; Magnus Höök; Mario Recker
Despite progress in our understanding of infectious disease biology and prevention, the conditions that select for the establishment and maintenance of microbial virulence remain enigmatic. To address this aspect of pathogen biology, we focus on two members of the Staphylococcus genus — Staphylococcus aureus and Staphylococcus epidermidis — and consider why S. aureus has evolved to become more virulent than S. epidermidis. Several hypotheses to explain this phenomenon are discussed and a mathematical model is used to argue that a complex transmission pathway is the key factor in explaining the evolution and maintenance of virulence in S. aureus. In the case of S. epidermidis, where skin contact affords easier transmission between hosts, high levels of virulence do not offer an advantage to this pathogen.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Mario Recker; Oliver G. Pybus; Sean Nee; Sunetra Gupta
It is commonly believed that influenza epidemics arise through the incremental accumulation of viral mutations, culminating in a novel antigenic type that is able to escape host immunity. Successive epidemic strains therefore become increasingly antigenically distant from a founding strain. Here, we present an alternative explanation where, because of functional constraints on the defining epitopes, the virus population is characterized by a limited set of antigenic types, all of which may be continuously generated by mutation from preexisting strains and other processes. Under these circumstances, influenza outbreaks arise as a consequence of host immune selection in a manner that is independent of the mode and tempo of viral mutation. By contrast with existing paradigms, antigenic distance between epidemic strains does not necessarily accumulate with time in our model, and it is the changing profile of host population immunity that creates the conditions for the emergence of the next influenza strain rather than the mutational capabilities of the virus.
The ISME Journal | 2010
James Collins; Justine K. Rudkin; Mario Recker; Clarissa Pozzi; James P. O'Gara; Ruth C. Massey
The prevalence of diverse MRSA (methicillin-resistant Staphylococcus aureus) types in both hospital and community settings is a major health problem worldwide. Here we compare hospital-acquired MRSAs with large type II SCCmec elements with those prevalent in both hospital and community settings with smaller type IV SCCmec elements. We find that the type II but not the type IV SCCmec element causes the bacteria to reduce their levels of costly toxin expression. We compare the relative growth rates of these MRSA types and show that the type II SCCmec carrying MRSAs are more affected than those carrying type IV elements and from this we hypothesize that offsetting the costs associated with antibiotic resistance and toxin expression is why the type II are confined to hospital environments where antibiotic use, the prevalence of immunocompromised individuals and vector-mediated transmission is high. In contrast, those MRSAs that are also successful in the community can maintain their high levels of toxin expression due to a lower fitness burden associated with the smaller SCCmec element.