Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Franco is active.

Publication


Featured researches published by José M. Franco.


Rheologica Acta | 1995

Rheology and processing of salad dressing emulsions

José M. Franco; A. Guerrero; C. Gallegos

In order to study the influence that the processing parameters exert on the rheology and stability of salad dressing emulsions, both steady-state shear and oscillatory measurements, as well as droplet size distribution tests were performed. Emulsions containing a mixture of egg yolk and sucrose stearate as emulsifier were prepared using two different emulsification machines, a rotor-stator turbine and a colloidal mill. An increase both in energy input and in the temperature of processing yields higher values of the steady-state viscosity, an increase in emulsion stability and, generally, lower droplet size and lower polydispersity. Furthermore, a plateau region in the loss modulus versus frequency plots appears as the energy input and processing temperature increase. This effect has been analyzed by calculating the relaxation spectra of these emulsions. The results have been discussed taking into account the relationship between several structural parameters, such as interparticle interactions and droplet size distribution, and the rheological response of these emulsions.


Journal of Tribology-transactions of The Asme | 2000

Modeling of the non-linear rheological behavior of a lubricating grease at low-shear rates

José M. Madiedo; José M. Franco; C. Valencia; C. Gallegos

This paper deals with modeling the non-linear rheological behavior of lubricating greases at very low shear rates. With this aim, dynamic linear viscoelastic, non-linear stress relaxation, transient and steady-state shear flow, and transient first normal stress difference measurements have been carried out on a diurea-derivative lubricating grease. A factorable non-linear viscoelasticity model, the Wagner integral model, derived from the K-BKZ constitutive equation, was used in order to predict the non-linear rheological response of the above-mentioned lubricating grease under shear. The time-dependent part of the model was described by its linear relaxation spectrum, whilst two different damping functions (Wagner and Soskey-Winters damping functions) were analysed as the strain-dependent factor. The continuous linear relaxation spectrum was estimated, using regularization techniques, from the dynamic linear viscoelasticity functions. The damping function was calculated from non-linear stress relaxation tests. The constitutive model, with Soskey-Winters damping function, predicted the steady-state flow curve, the transient shear stress and the transient first normal stress differences of the lubricating grease studied fairly well.


Molecules | 2013

Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil

R. Gallego; Jesús F. Arteaga; C. Valencia; José M. Franco

The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO–functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for –NCO–functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.


Polymers | 2017

Preparation, characterization and mechanical properties of bio-based polyurethane adhesives from Isocyanate-functionalized cellulose acetate and castor oil for bonding wood

Adrián Tenorio-Alfonso; M.C. Sánchez; José M. Franco

Nowadays, different types of natural carbohydrates such as sugars, starch, cellulose and their derivatives are widely used as renewable raw materials. Vegetable oils are also considered as promising raw materials to be used in the synthesis of high quality products in different applications, including in the adhesive field. According to this, several bio-based formulations with adhesion properties were synthesized first by inducing the functionalization of cellulose acetate with 1,6-hexamethylene diisocyanate and then mixing the resulting biopolymer with a variable amount of castor oil, from 20% to 70% (wt). These bio-based adhesives were mechanically characterized by means of small-amplitude oscillatory torsion measurements, at different temperatures, and standardized tests to evaluate tension loading (ASTM-D906) and peel strength (ASTM-D903). In addition, thermal properties and stability of the synthesized bio-polyurethane formulations were also analyzed through differential scanning calorimetry and thermal gravimetric analysis. As a result, the performance of these bio-polyurethane products as wood adhesives were compared and analyzed. Bio-polyurethane formulations exhibited a simple thermo-rheological behavior below a critical temperature of around 80–100 °C depending on the castor oil/cellulose acetate weight ratio. Formulation with medium castor oil/biopolymer weight ratio (50:50 % wt) showed the most suitable mechanical properties and adhesion performance for bonding wood.


Holzforschung | 2017

Influence of epoxidation conditions on the rheological properties of gel-like dispersions of epoxidized kraft lignin in castor oil

Esperanza Cortés-Triviño; C. Valencia; José M. Franco

Abstract The modification of castor oil (CO) with lignin was the focus of this research to create a lubricating medium with improved gel-like properties. Namely, an alkali lignin (L) was epoxidized with epichlorohydrin (EP) and the resulting LEPs were dispersed in CO. The parameters of LEP synthesis were varied and the epoxidation index (EPI) of the LEPs was determined. The LEPs were also submitted to thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Rheological responses of the LEP/CO dispersions were investigated through small-amplitude oscillatory shear (SAOS) tests. Linear viscoelasticity functions are quantitatively affected by the epoxidation parameters, such as temperature, reaction time and L/EP and L/NaOH ratios. In general, lignins with higher EPI show higher values of the SAOS functions, which are indicative of better gel-strength due to a higher cross-linking density between the LEPs and CO. A power-law equation describes well the evolution of the complex modulus, G*, with frequency of gel-like dispersions, where the power-law parameters were found to increase almost linearly with the EPI. The thermo-rheological characterization provides a softening temperature beyond 50°C.


Polymers | 2018

Modification of Alkali Lignin with Poly(Ethylene Glycol) Diglycidyl Ether to Be Used as a Thickener in Bio-Lubricant Formulations

Esperanza Cortés-Triviño; C. Valencia; Miguel Ángel Rodríguez Delgado; José M. Franco

Considerable efforts are currently being made by the academic community and industry, aiming to develop environmentally friendly lubricants with suitable technical features for their performance. In this context, lignin could be considered a promising candidate to be used as a bio-sourced thickening agent to formulate eco-friendly lubricating greases. In this work, alkali lignin (AL) was chemically modified with poly(ethylene glycol) diglycidyl ether (PEGDE). Afterwards, the epoxidized lignin was properly dispersed in castor oil (CO) in order to obtain an oleogel for lubricant applications. The epoxidized lignins were characterized by means of epoxy index determination, thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The epoxide-functionalized lignin-based oleogels were analyzed from both rheological and tribological points of view. It was found that the viscosity, consistency and viscoelastic functions of these oleogels clearly increased with the epoxy index of the epoxide-modified lignin compound. Thermo-rheological characterization of these oleogels revealed a slight thermal dependence of the viscoelastic moduli below 100 °C, but a significant softening above that critical temperature. In general, these oleogels showed low values of the friction coefficient under the mixed lubrication regime as compared to the neat castor oil.


Journal of Agricultural and Food Chemistry | 1997

Linear Viscoelasticity of Salad Dressing Emulsions

José M. Franco; M. Berjano; C. Gallegos


Journal of Agricultural and Food Chemistry | 2011

Natural and Synthetic Antioxidant Additives for Improving the Performance of New Biolubricant Formulations

Lida A. Quinchia; Miguel Ángel Rodríguez Delgado; C. Valencia; José M. Franco; C. Gallegos


Archive | 2004

RHEOLOGY OF FOOD DISPERSIONS

C. Gallegos; José M. Franco; P. Partal


Polymers | 2014

Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications

R. Gallego; Mercedes González; Jesús F. Arteaga; C. Valencia; José M. Franco

Collaboration


Dive into the José M. Franco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge