Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Fuentes is active.

Publication


Featured researches published by José M. Fuentes.


Journal of Immunology | 2001

Differential Regulation of Nitric Oxide Synthase-2 and Arginase-1 by Type 1/Type 2 Cytokines In Vivo: Granulomatous Pathology Is Shaped by the Pattern of l-Arginine Metabolism

Matthias Hesse; Manuel Modolell; Anne Camille La Flamme; Marco Schito; José M. Fuentes; Allen W. Cheever; Edward J. Pearce; Thomas A. Wynn

Type 2 cytokines regulate fibrotic liver pathology in mice infected with Schistosoma mansoni. Switching the immune response to a type 1-dominant reaction has proven highly effective at reducing the pathologic response. Activation of NOS-2 is critical, because type 1-deviated/NO synthase 2 (NOS-2)-deficient mice completely fail to control their response. Here, we demonstrate the differential regulation of NOS-2 and arginase type 1 (Arg-1) by type 1/type 2 cytokines in vivo and for the first time show a critical role for arginase in the pathogenesis of schistosomiasis. Using cytokine-deficient mice and two granuloma models, we show that induction of Arg-1 is type 2 cytokine dependent. Schistosome eggs induce Arg-1, while Mycobacterium avium-infected mice develop a dominant NOS-2 response. IFN-γ suppresses Arg-1 activity, because type 1 polarized IL-4/IL-10-deficient, IL-4/IL-13-deficient, and egg/IL-12-sensitized animals fail to up-regulate Arg-1 following egg exposure. Notably, granuloma size decreases in these type-1-deviated/Arg-1-unresponsive mice, suggesting an important regulatory role for Arg-1 in schistosome egg-induced pathology. To test this hypothesis, we administered difluoromethylornithine to block ornithine-aminodecarboxylase, which uses the product of arginine metabolism, l-ornithine, to generate polyamines. Strikingly, granuloma size and hepatic fibrosis increased in the ornithine-aminodecarboxylase-inhibited mice. Furthermore, we show that type 2 cytokine-stimulated macrophages produce proline under strict arginase control. Together, these data reveal an important regulatory role for the arginase biosynthetic pathway in the regulation of inflammation and demonstrate that differential activation of Arg-1/NOS-2 is a critical determinant in the pathogenesis of granuloma formation.


The FASEB Journal | 2005

Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo.

Pascale Kropf; José M. Fuentes; Eva Fähnrich; Luis Arpa; Shanthi Herath; Verena Weber; Germán Soler; Antonio Celada; Manuel Modolell; Ingrid Müller

Arginase 1, an enzyme induced by Th2 cytokines, is a hallmark of alternatively activated macrophages and is responsible for the hydrolysis of l‐arginine into ornithine, the building block for the production of polyamines. Upregulation of arginase 1 has been observed in a variety of diseases, but the mechanisms by which arginase contributes to pathology are not well understood. We reveal here a unique role for arginase 1 in the pathogenesis of nonhealing leishmaniasis, a prototype Th2 disease, and demonstrate that the activity of this enzyme promotes pathology and uncontrolled growth of Leishmania parasites in vivo. Inhibition of arginase activity during the course of infection has a clear therapeutic effect, as evidenced by markedly reduced pathology and efficient control of parasite replication. Despite the clear amelioration of the disease, this treatment does not alter the Th2 response. To address the underlying mechanisms, the arginase‐induced l‐arginine catabolism was investigated and the results demonstrate that arginase regulates parasite growth directly by affecting the polyamine synthesis in macrophages.


European Journal of Immunology | 2007

Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy

Pascale Kropf; David Baud; Sara E. Marshall; Markus Munder; Angelina J. Mosley; José M. Fuentes; Charles R. M. Bangham; Graham P. Taylor; Shanti Herath; Beak-San Choi; Germán Soler; Tg Teoh; Manuel Modolell; Ingrid Müller

Complex regulation of T cell functions during pregnancy is required to ensure materno‐fetal tolerance. Here we reveal a novel pathway for the temporary suppression of maternal T cell responses in uncomplicated human pregnancies. Our results show that arginase activity is significantly increased in the peripheral blood of pregnant women and remarkably high arginase activities are expressed in term placentae. High enzymatic activity results in high turnover of its substrate L‐arginine and concomitant reduction of this amino acid in the microenvironment. Amino acid deprivation is emerging as a regulatory pathway of lymphocyte responses and we assessed the consequences of this enhanced arginase activity on T cell responses. Arginase‐mediated L‐arginine depletion induces down‐regulation of CD3ζ, the main signalling chain of the TCR, and functional T cell hyporesponsiveness. Importantly, this arginase‐mediated T cell suppression was reversible, as inhibition of arginase activity or addition of exogenous L‐arginine restored CD3ζ chain expression and T cell proliferation. Thus, L‐arginine metabolism constitutes a novel physiological mechanism contributing to the temporary suppression of the maternal immune response during human pregnancy.


Journal of Neurochemistry | 2001

Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells.

Alfonso Mora; Guadalupe Sabio; Rosa A. González-Polo; Ana Cuenda; Dario R. Alessi; Juan C. Alonso; José M. Fuentes; Germán Soler; Francisco Centeno

Lithium protects cerebellar granule cells from apoptosis induced by low potassium, and also from other apoptotic stimuli. However, the precise mechanism by which this occurs is not understood. When cerebellar granule cells were switched to low potassium medium, the activation of caspase 3 was detected within 6 h, suggesting a role of caspase 3 in mediating apoptosis under conditions of low potassium. In the same conditions, lithium (5 mm) inhibited the activation of caspase 3 induced by low potassium. As lithium did not inhibit caspase 3 activity in vitro, these results suggest that this ion inhibits an upstream component that is required for caspase 3 activation. Lithium is known to inhibit a kinase termed glycogen sythase kinase 3 (GSK3), which is implicated in the survival pathway of phosphatidylinositol 3‐kinase/protein kinase B (PI3K/PKB). Here we demonstrate that low potassium in the absence of lithium induces the dephosphorylation, and therefore the activation, of GSK3. However, when lithium was present, GSK3 remained phosphorylated at the same level as observed under conditions of high potassium. Low potassium induced the dephosphorylation and inactivation of PKB, whereas when lithium was present PKB was not dephosphorylated. Our results allow us to propose a new hypothesis about the action mechanism of lithium, this ion could inhibit a serine‐threonine phosphatase induced by potassium deprivation.


Cellular and Molecular Life Sciences | 2013

The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway

José Manuel Bravo-San Pedro; Mireia Niso-Santano; Rubén Gómez-Sánchez; Elisa Pizarro-Estrella; Ana Aiastui-Pujana; Ana Gorostidi; Vicente Climent; Rakel López de Maturana; Rosario Sánchez-Pernaute; Adolfo López de Munain; José M. Fuentes; Rosa A. González-Polo

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson’s disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.


Free Radical Biology and Medicine | 2010

Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis

Mireia Niso-Santano; Rosa A. González-Polo; José Manuel Bravo-San Pedro; Rubén Gómez-Sánchez; Isabel Lastres-Becker; Miguel A. Ortiz-Ortiz; Germán Soler; Jose M. Moran; Antonio Cuadrado; José M. Fuentes

Although oxidative stress is fundamental to the etiopathology of Parkinson disease, the signaling molecules involved in transduction after oxidant exposure to cell death are ill-defined, thus making it difficult to identify molecular targets of therapeutic relevance. We have addressed this question in human dopaminergic neuroblastoma SH-SY5Y cells exposed to the parkinsonian toxin paraquat (PQ). This toxin elicited a dose-dependent increase in reactive oxygen species and cell death that correlated with activation of ASK1 and the stress kinases p38 and JNK. The relevance of these kinases in channeling PQ neurotoxicity was demonstrated with the use of interference RNA for ASK1 and two well-established pharmaceutical inhibitors for JNK and p38. The toxic effect of PQ was substantially attenuated by preincubation with vitamin E, blocking ASK1 pathways and preventing oxidative stress and cell death. In a search for a physiological pathway that might counterbalance PQ-induced ASK1 activation, we analyzed the role of the transcription factor Nrf2, master regulator of redox homeostasis, and its target thioredoxin (Trx), which binds and inhibits ASK1. Trx levels were undetectable in Nrf2-deficient mouse embryo fibroblasts (MEFs), whereas they were constitutively high in Keap1-deficient MEFs as well as in SH-SY5Y cells treated with sulforaphane (SFN). Consistent with these data, Nrf2-deficient MEFs were more sensitive and Keap1-deficient MEFs and SH-SY5Y cells incubated with SFN were more resistant to PQ-induced cell death. This study identifies ASK1/JNK and ASK1/p38 as two critical pathways involved in the activation of cell death under oxidative stress conditions and identifies the Nrf2/Trx axis as a new target to block these pathways and protect from oxidant exposure such as that found in Parkinson and other neurodegenerative diseases.


Brain Research | 2004

Paraquat-induced apoptotic cell death in cerebellar granule cells

Rosa A. González-Polo; Andrea Rodríguez-Martín; Jose M. Moran; Mireia Niso; Germán Soler; José M. Fuentes

We examined the toxicity of paraquat, a possible environmental risk factor for neurodegenerative disorders like Parkinsons disease (PD). Paraquat is structurally similar to the neurotoxin MPP+ that can induce Parkinsonian-like features in rodents, non-human primates and human. Exposure of cerebellar granule cells to relatively low concentrations of paraquat (5 microM) produces apoptotic cell death with a reduction in mitochondrial cytochrome c content, proteolytic activation and caspase-3 activity increase and DNA fragmentation. Paraquat-induced apoptosis was significantly attenuated by co-treatment of cerebellar granule cells with the radical scavenger vitamin E, suggesting that paraquat-induced free radicals serve as important signal in initiation of cell death. As a decrease in mitochondrial cytochrome c content is also prevented by allopurinol, we suggest that xanthine oxidase plays an important role in the free radical production that precedes the apoptotic cascade and cell death after paraquat exposition.


The EMBO Journal | 2011

Inhibition of autophagy by TAB2 and TAB3

Alfredo Criollo; Mireia Niso-Santano; Shoaib Ahmad Malik; Mickaël Michaud; Eugenia Morselli; Guillermo Mariño; Sylvie Lachkar; Alexander V Arkhipenko; Francis Harper; Gérard Pierron; Jean-Christophe Rain; Jun Ninomiya-Tsuji; José M. Fuentes; Sergio Lavandero; Lorenzo Galluzzi; Maria Chiara Maiuri; Guido Kroemer

Autophagic responses are coupled to the activation of the inhibitor of NF‐κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ‐activated kinase 1 (TAK1)‐binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1‐IKK signalling axis, constitutively interact with each other via their coiled‐coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C‐terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy‐stimulatory ‘switch’ whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.


Journal of Neurochemistry | 2009

Silencing DJ‐1 reveals its contribution in paraquat‐induced autophagy

Rosa A. González-Polo; Mireia Niso-Santano; Jose M. Moran; Miguel A. Ortiz-Ortiz; José Manuel Bravo-San Pedro; Germán Soler; José M. Fuentes

J. Neurochem. (2009) 109, 889–898.


Neuroreport | 1998

Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons

Francisco Centeno; Alfonso Mora; José M. Fuentes; Germà Soler; Enrique Claro

PRIMARY cultures of cerebellar granule neurons, maintained in a serum-containing medium, underwent apoptosis when exposed to C2-ceramide, as assessed by mitochondrial reduction of MTT and intranucleosomal DNA fragmentation. After an 8h exposure to 50 μM C2-ceramide, cell viability decreased by 25–40%. Addition of lithium together with C2-ceramide resulted in a partial protection of apoptosis, which was maximal ab mM lithium (37% protection). When lithium was added h before the apoptotic stimulus the neuroprotective effect of the ion was clearly increased (66% protection). This effect was not due to intracellular inositol depletion or inhibition of NMDA receptors. Our data broaden the nature of apoptotic insults being reversed by lithium, stressing the neuroprotective effects of the ion.

Collaboration


Dive into the José M. Fuentes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mireia Niso-Santano

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Germán Soler

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose M. Moran

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge