Miguel A. Ortiz-Ortiz
University of Extremadura
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miguel A. Ortiz-Ortiz.
Free Radical Biology and Medicine | 2010
Mireia Niso-Santano; Rosa A. González-Polo; José Manuel Bravo-San Pedro; Rubén Gómez-Sánchez; Isabel Lastres-Becker; Miguel A. Ortiz-Ortiz; Germán Soler; Jose M. Moran; Antonio Cuadrado; José M. Fuentes
Although oxidative stress is fundamental to the etiopathology of Parkinson disease, the signaling molecules involved in transduction after oxidant exposure to cell death are ill-defined, thus making it difficult to identify molecular targets of therapeutic relevance. We have addressed this question in human dopaminergic neuroblastoma SH-SY5Y cells exposed to the parkinsonian toxin paraquat (PQ). This toxin elicited a dose-dependent increase in reactive oxygen species and cell death that correlated with activation of ASK1 and the stress kinases p38 and JNK. The relevance of these kinases in channeling PQ neurotoxicity was demonstrated with the use of interference RNA for ASK1 and two well-established pharmaceutical inhibitors for JNK and p38. The toxic effect of PQ was substantially attenuated by preincubation with vitamin E, blocking ASK1 pathways and preventing oxidative stress and cell death. In a search for a physiological pathway that might counterbalance PQ-induced ASK1 activation, we analyzed the role of the transcription factor Nrf2, master regulator of redox homeostasis, and its target thioredoxin (Trx), which binds and inhibits ASK1. Trx levels were undetectable in Nrf2-deficient mouse embryo fibroblasts (MEFs), whereas they were constitutively high in Keap1-deficient MEFs as well as in SH-SY5Y cells treated with sulforaphane (SFN). Consistent with these data, Nrf2-deficient MEFs were more sensitive and Keap1-deficient MEFs and SH-SY5Y cells incubated with SFN were more resistant to PQ-induced cell death. This study identifies ASK1/JNK and ASK1/p38 as two critical pathways involved in the activation of cell death under oxidative stress conditions and identifies the Nrf2/Trx axis as a new target to block these pathways and protect from oxidant exposure such as that found in Parkinson and other neurodegenerative diseases.
Journal of Neurochemistry | 2009
Rosa A. González-Polo; Mireia Niso-Santano; Jose M. Moran; Miguel A. Ortiz-Ortiz; José Manuel Bravo-San Pedro; Germán Soler; José M. Fuentes
J. Neurochem. (2009) 109, 889–898.
Journal of Biochemical and Molecular Toxicology | 2010
Jose M. Moran; Miguel A. Ortiz-Ortiz; Luz M. Ruiz-Mesa; José M. Fuentes
Paraquat, a cationic herbicide, produces degenerative lesions in the lung and in the nervous system after systemic administration to man and animals. Many cases of acute poisoning and death have been reported over the past few decades. Although a definitive mechanism of toxicity of paraquat has not been delineated, a cyclic single electron reduction/oxidation is a critical mechanistic event. The redox cycling of paraquat has two potentially important consequences relevant to the development of toxicity: the generation of the superoxide anion, which can lead to the formation of more toxic reactive oxygen species which are highly reactive to cellular macromolecules; and the oxidation of reducing equivalents (e.g., NADPH, reduced glutathione), which results in the disruption of important NADPH‐requiring biochemical processes necessary for normal cell function. Nitric oxide is an important signaling molecule that reacts with superoxide derived from the paraquat redox cycle, to form the potent oxidant peroxynitrite, which causes serious cell damage. Although nitric oxide has been involved in the mechanism of paraquat‐mediated toxicity, the role of nitric oxide has been controversial as both protective and harmful effects have been described. The present review summarizes recent findings in the field and describes new knowledge on the role of nitric oxide in the paraquat‐mediated toxicity.
Autophagy | 2007
Rosa A. González-Polo; Mireia Niso-Santano; Miguel A. Ortiz-Ortiz; Ana Gómez-Martín; Jose M. Moran; Lourdes García-Rubio; Javier Francisco-Morcillo; Concepción Zaragoza; Germán Soler; José M. Fuentes
Paraquat (PQ) (1, 1’-dimethyl-4, 4’-bipyridinium dichloride), a widely used herbicide, has been suggested as a potential etiologic factor for the development of Parkinson’s disease (PD). In neurons from patients with PD display characteristics of autophagy, a degradative mechanism involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. Low concentrations of paraquat have been recently found to induce autophagy in human neuroblastoma cells, and ultimately the neurons succumb to apoptotic death. Whereas caspase inhibition retarded cell death, autophagy inhibition accelerated the apoptotic cell death induced by paraquat. These findings suggest a relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with paraquat and open a new line of investigation to advance our knowledge regarding the origin of PD. Addendum to Inhibition of Paraquat-Induced Autophagy Accelerates the Apoptotic Cell Death in Neuroblastoma SH-SY5Y Cells R.A. González-Polo, M. Niso-Santano, M.A. Ortíz-Ortíz, A. Gómez-Martín, J.M. Morán, L. García-Rubio, J. Francisco-Morcillo, C. Zaragoza , G. Soler and J.M. Fuentes Toxicological Science 2007; In press
Journal of Toxicology and Environmental Health | 2008
Jose M. Moran; Rosa A. González-Polo; Miguel A. Ortiz-Ortiz; Mireia Niso-Santano; Germán Soler; José M. Fuentes
Paraquat (PQ) (1,1-dimethyl-4,4′-bipyridinium dichloride), a widely used herbicide, has been suggested as a potential etiologic factor for the development of Parkinsons disease (PD). In this sense, understanding of the molecular mechanism underlying PQ-induced toxicity to neural cells is important for optimal use as well as for the development of new drugs. To gain insights into PQ-induced neurotoxicity, polymerase chain reaction (PCR) array analysis focused on a panel of apoptosis-related genes was performed using neuroblastoma SH-SY5Y cells. Up to 65 apoptosis-related genes were monitored. Our analysis of apoptotic process through microarray technology showed that in PQ-induced neuroblastoma SH-SY5Y cells, there is a different expression of BIK, CASP3, CASP7, CRADD, DAPK, FAS, and other related genes, in comparison to unstimulated cells. Evaluation of genes regulated differentially is essential for the development of therapeutic approaches in multifactorial diseases as PD. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in PQ-mediated toxicity of neural cells.
Toxicological Sciences | 2010
Miguel A. Ortiz-Ortiz; Jose M. Moran; Luz M. Ruiz-Mesa; José Manuel Bravo-San Pedro; José M. Fuentes
Paraquat (PQ) is a well-known herbicide that exerts its effects by elevating intracellular levels of superoxide. It has been previously demonstrated that oxidative and nitrosative stress participate to PQ-induced cell death. Here, we document that PQ increases the levels of nitric oxide (NO) in rat mesencephalic cells and causes nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to activate the NO/GAPDH/Siah cell death cascade. PQ exposure increases expression of the p300/CREB-binding protein (p300/CBP) and phosphorylation of p53 at Ser 15, which stimulates p53-dependent transactivation through increased binding with p300. Although this cascade could be inhibited by preincubation with the monoamine oxidase B inhibitor deprenyl, cell death was not prevented. Pretreatment of cells with the neuronal nitric oxide synthase inhibitor 7-nitroindazole efficiently prevented the activation of the GAPDH/NO/Siah cell death cascade, thereby protecting cells against PQ-induced toxicity. The results suggest that PQ induces this novel cell death cascade in rat mesencephalic cells, but inhibition of the pathway does not impede cell death because of an oxidative burst generated by the pesticide.
Neurotoxicology | 2009
Miguel A. Ortiz-Ortiz; Jose M. Moran; Jose M. Bravosanpedro; Rosa A. González-Polo; Mireia Niso-Santano; Vellareddy Anantharam; Anumantha G. Kanthasamy; Germán Soler; José M. Fuentes
Curcumin, the active compound of the rhizome of Curcuma longa has anti-inflammatory, antioxidant and antiproliferative activities. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. While curcumin has been identified as an activator of apoptosis in several cell lines, the mechanism by which it initiates apoptosis, however, remains poorly understood. We considered curcumin from the point of view of its ability to protect against oxidative stress, the latter being one factor strongly implicated in the development of Parkinsons disease. Although the etiology of Parkinsons disease remains unknown, epidemiological studies have linked exposure to pesticides such paraquat to an increased risk of developing the condition. Analysis of the neurotoxic properties of these pesticide compounds has been focused on their ability to induce oxidative stress in neural cells. Given curcumins capacity to protect against oxidative stress, it has been considered as a potential therapeutic agent for neurodegenerative diseases such as Parkinsons disease that involve an oxidative stress component. In the present report we describe the effect of curcumin in paraquat-mediated apoptosis of N27 mesencepahlic cells. We show that subtoxic concentrations of curcumin sensitize N27 mesencephalic cells to paraquat-mediated apoptosis.
Environmental Toxicology and Pharmacology | 2011
Miguel A. Ortiz-Ortiz; Jose M. Moran; Luz M. Ruiz-Mesa; Rafael Guerrero Bonmatty; José M. Fuentes
Paraquat is a cationic herbicide that causes acute cell injury by undergoing redox cycling. Oxidative stress is thought to be the crucial mechanism invoked by this redox-cycling compound. The cytotoxicity of paraquat was examined in an immortalized human mesencephalic neuron-derived cell line. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction activity was examined as cytotoxicity indicator. Cells were seeded with densities at inoculation of 5 × 10(4)cells/ml and 10 × 10(4)cells/ml, and paraquat was added 24h later to give final concentrations from 10 to 500 μM. At 24 and 48 h of treatment, mitochondrial activity was determined with the MTT assay. To further understand the effect of paraquat exposure on human mesencephalic neuron-derived cells, the cells were differentiated and similar experiments were carried out. Supplementation of culture medium with dibutyryl cyclic AMP and GDNF significantly increased the resistance of the cultures to the paraquat-mediated cytotoxicity. These results confirm that GDNF confers protection against paraquat-mediated cytotoxicity and show that immortalized human mesencephalic neuron-derived cells are an adequate in vitro system for evaluating the cytoprotective effects of GDNF on oxidative injury caused by xenobiotics.
Neuroscience Letters | 2010
Miguel A. Ortiz-Ortiz; Jose M. Moran; Luz M. Ruiz-Mesa; Mireia Niso-Santano; Jose M. Bravosanpedro; Rubén Gómez-Sánchez; Rosa A. González-Polo; José M. Fuentes
Turmeric (curry powder), an essential ingredient of culinary preparations of Southeast Asia, contains a major polyphenolic compound known as curcumin or diferuloylmethane. Curcumin is a widely studied phytochemical with a variety of biological activities. In addition to its anti-inflammatory and antimicrobial/antiviral properties, curcumin is considered as a cancer chemopreventive agent as well as a modulator of gene expression and a potent antioxidant. Since oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra in Parkinsons disease (PD), curcumin has been proposed to have potential therapeutic value for the treatment of neurodegenerative diseases such as PD. Following age, a family history of PD is the most commonly reported risk factor, suggesting a genetic component of the disease in a subgroup of patients. The LRRK2 gene has emerged as the gene most commonly associated with both familial and sporadic PD. Here, we report that exposure of rat mesencephalic cells to curcumin induces the expression of LRRK2 mRNA and protein in a time-dependent manner. The expression of other PD-related genes, such alpha-synuclein and parkin, was not affected by exposure to curcumin, and PTEN-induced putative kinase 1 (PINK1) was not expressed in rat mesencephalic cells. As LRRK2 overexpression is strongly associated with the pathological inclusions found in several neurodegenerative disorders, further studies are needed to evaluate the effects of curcumin as a therapeutic agent for neurodegenerative diseases.
Nitric Oxide | 2010
Jose M. Moran; Miguel A. Ortiz-Ortiz; Luz M. Ruiz-Mesa; Mireia Niso-Santano; Jose M. Bravosanpedro; Rubén Gómez Sánchez; Rosa A. González-Polo; José M. Fuentes
When neural cells are exposed to paraquat, nitric oxide generation increases primarily due to an increase in the expression of the inducible isoform of nitric oxide synthase. The nitric oxide generated has controversial actions in paraquat exposure, as both protective and harmful effects have been described previously. While the actions mediated by nitric oxide in neural cells have been well described, there is evidence that nitric oxide may also be an important modulator of the expression of several genes during paraquat exposure. To better understand the actions of nitric oxide and its potential role in paraquat-induced gene expression, we examined changes in GCH1, ARG1, ARG2, NOS1, NOS2, NOS3, NOSTRIN, NOSIP, NOS1AP, RASD1, DYNLL1, GUCY1A3, DDAH1, DDAH2 and CYGB genes whose expression is controlled by or involved in signaling by the second messenger nitric oxide, in rat mesencephalic cells after 3, 6, 12 and 24h of paraquat exposure. A qPCR strategy targeting these genes was developed using a SYBR green I-based method. The mRNA levels of all the genes studied were differentially regulated during exposure. These results demonstrate that nitric oxide-related genes are regulated following paraquat exposure of mesencephalic cells and provide the basis for further studies exploring the physiological and functional significance of nitric oxide-sensitive genes in paraquat-mediated neurotoxicity.