Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. González is active.

Publication


Featured researches published by José M. González.


Applied and Environmental Microbiology | 2005

Overview of the Marine Roseobacter Lineage

Alison Buchan; José M. González; Mary Ann Moran

Despite the overwhelming bacterial diversity present in the worlds oceans, the majority of recognized marine bacteria fall into as few as nine major clades (36), many of which have yet to be cultivated in the laboratory. Molecular-based approaches targeting 16S rRNA genes demonstrate that the Roseobacter clade is one of these major marine groups, typically comprising upwards of 20% of coastal and 15% of mixed-layer ocean bacterioplankton communities (see, e.g., references 36, 37, 42, 98, and 109). Roseobacters are well represented across diverse marine habitats, from coastal to open oceans and from sea ice to sea floor (see, e.g., references 16, 28, 37, 42, 52, and 98). Members have been found to be free living, particle associated, or in commensal relationships with marine phytoplankton, invertebrates, and vertebrates (see, e.g., references 4, 6, 7, 44, 49, 115, and 119). Furthermore, representatives of the clade stand out as representing one of the most readily cultivated of the major marine lineages (36). These isolated representatives are serving as the foundation for an improved understanding of marine bacterial ecology and physiology.


Applied and Environmental Microbiology | 2000

Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom

José M. González; Rafel Simó; Ramon Massana; Joseph S. Covert; Emilio O. Casamayor; Carlos Pedrós-Alió; Mary Ann Moran

ABSTRACT The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated thatRoseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δProteobacteria) were primarily found in deeper waters (200 to 500 m).


PLOS ONE | 2009

Assembling the Marine Metagenome, One Cell at a Time

Tanja Woyke; Gary Xie; Alex Copeland; José M. González; Cliff Han; Hajnalka Kiss; Jimmy Hw Saw; Pavel Senin; Chi Yang; Sourav Chatterji; Jan Fang Cheng; Jonathan A. Eisen; Michael E. Sieracki; Ramunas Stepanauskas

The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.


Applied and Environmental Microbiology | 2007

Ecological Genomics of Marine Roseobacters

Mary Ann Moran; R. Belas; M. A. Schell; José M. González; F. Sun; Shulei Sun; Brian J. Binder; J. Edmonds; Wenying Ye; Beth N. Orcutt; Erinn C. Howard; Christof Meile; W. Palefsky; Alexander Goesmann; Q. Ren; I. Paulsen; L. E. Ulrich; L. S. Thompson; E. Saunders; Alison Buchan

ABSTRACT Bacterioplankton of the marine Roseobacter clade have genomes that reflect a dynamic environment and diverse interactions with marine plankton. Comparative genome sequence analysis of three cultured representatives suggests that cellular requirements for nitrogen are largely provided by regenerated ammonium and organic compounds (polyamines, allophanate, and urea), while typical sources of carbon include amino acids, glyoxylate, and aromatic metabolites. An unexpectedly large number of genes are predicted to encode proteins involved in the production, degradation, and efflux of toxins and metabolites. A mechanism likely involved in cell-to-cell DNA or protein transfer was also discovered: vir-related genes encoding a type IV secretion system typical of bacterial pathogens. These suggest a potential for interacting with neighboring cells and impacting the routing of organic matter into the microbial loop. Genes shared among the three roseobacters and also common in nine draft Roseobacter genomes include those for carbon monoxide oxidation, dimethylsulfoniopropionate demethylation, and aromatic compound degradation. Genes shared with other cultured marine bacteria include those for utilizing sodium gradients, transport and metabolism of sulfate, and osmoregulation.


Nature | 2007

Light stimulates growth of proteorhodopsin-containing marine Flavobacteria

Laura Gómez-Consarnau; José M. González; Montserrat Coll-Lladó; Pontus Gourdon; Torbjörn Pascher; Richard Neutze; Carlos Pedrós-Alió; Jarone Pinhassi

Proteorhodopsins are bacterial light-dependent proton pumps. Their discovery within genomic material from uncultivated marine bacterioplankton caused considerable excitement because it indicated a potential phototrophic function within these organisms, which had previously been considered strictly chemotrophic. Subsequent studies established that sequences encoding proteorhodopsin are broadly distributed throughout the world’s oceans. Nevertheless, the role of proteorhodopsins in native marine bacteria is still unknown. Here we show, from an analysis of the complete genomes of three marine Flavobacteria, that cultivated bacteria in the phylum Bacteroidetes, one of the principal components of marine bacterioplankton, contain proteorhodopsin. Moreover, growth experiments in both natural and artificial seawater (low in labile organic matter, which is typical of the world’s oceans) establish that exposure to light results in a marked increase in the cell yield of one such bacterium (Dokdonia sp. strain MED134) when compared with cells grown in darkness. Thus, our results show that the phototrophy conferred by proteorhodopsin can provide critical amounts of energy, not only for respiration and maintenance but also for active growth of marine bacterioplankton in their natural environment.


Nature Reviews Microbiology | 2014

Master recyclers: features and functions of bacteria associated with phytoplankton blooms.

Alison Buchan; Gary R. LeCleir; Christopher A. Gulvik; José M. González

Marine phytoplankton blooms are annual spring events that sustain active and diverse bloom-associated bacterial populations. Blooms vary considerably in terms of eukaryotic species composition and environmental conditions, but a limited number of heterotrophic bacterial lineages — primarily members of the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria — dominate these communities. In this Review, we discuss the central role that these bacteria have in transforming phytoplankton-derived organic matter and thus in biogeochemical nutrient cycling. On the basis of selected field and laboratory-based studies of flavobacteria and roseobacters, distinct metabolic strategies are emerging for these archetypal phytoplankton-associated taxa, which provide insights into the underlying mechanisms that dictate their behaviours during blooms.


The ISME Journal | 2013

Ecology of marine Bacteroidetes: a comparative genomics approach

Beatriz Fernández-Gómez; Michael Richter; Margarete Schüler; Jarone Pinhassi; Silvia G. Acinas; José M. González; Carlos Pedrós-Alió

Bacteroidetes are commonly assumed to be specialized in degrading high molecular weight (HMW) compounds and to have a preference for growth attached to particles, surfaces or algal cells. The first sequenced genomes of marine Bacteroidetes seemed to confirm this assumption. Many more genomes have been sequenced recently. Here, a comparative analysis of marine Bacteroidetes genomes revealed a life strategy different from those of other important phyla of marine bacterioplankton such as Cyanobacteria and Proteobacteria. Bacteroidetes have many adaptations to grow attached to particles, have the capacity to degrade polymers, including a large number of peptidases, glycoside hydrolases (GHs), glycosyl transferases, adhesion proteins, as well as the genes for gliding motility. Several of the polymer degradation genes are located in close association with genes for TonB-dependent receptors and transducers, suggesting an integrated regulation of adhesion and degradation of polymers. This confirmed the role of this abundant group of marine bacteria as degraders of particulate matter. Marine Bacteroidetes had a significantly larger number of proteases than GHs, while non-marine Bacteroidetes had equal numbers of both. Proteorhodopsin containing Bacteroidetes shared two characteristics: small genome size and a higher number of genes involved in CO2 fixation per Mb. The latter may be important in order to survive when floating freely in the illuminated, but nutrient-poor, ocean surface.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria)

José M. González; Beatriz Fernández-Gómez; Antoni Fernández-Guerra; Laura Gómez-Consarnau; Olga Sánchez; Montserrat Coll-Lladó; Javier Campo; Lorena Escudero; Raquel Rodríguez-Martínez; Laura Alonso-Sáez; Mikel Latasa; Ian T. Paulsen; Olga I. Nedashkovskaya; Itziar Lekunberri; Jarone Pinhassi; Carlos Pedrós-Alió

Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean

Brandon K. Swan; Ben Tupper; Alexander Sczyrba; Federico M. Lauro; Manuel Martínez-García; José M. González; Haiwei Luo; Jody J. Wright; Zachary C. Landry; Niels W. Hanson; Brian Thompson; Nicole J. Poulton; Patrick Schwientek; Silvia G. Acinas; Stephen J. Giovannoni; Mary Ann Moran; Steven J. Hallam; Ricardo Cavicchioli; Tanja Woyke; Ramunas Stepanauskas

Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages.


International Journal of Systematic and Evolutionary Microbiology | 1997

Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community

José M. González; Frank Mayer; Mary Ann Moran; R. E. Hodson; William B. Whitman

Two numerically important bacteria in marine pulp mill effluent enrichment cultures were isolated. These organisms were gram-negative, rod-shaped, strictly aerobic bacteria. Isolate IRE-31T (T = type strain) produced hydrolytic enzymes for the breakdown of cellulose, xylan, chitin, gelatin, and Tween 80. It also utilized a variety of monosaccharides, disaccharides, amino acids, and volatile fatty acids for growth. Isolate KW-40T did not utilize natural polymers, but it could grow on a variety of monosaccharides, disaccharides, alcohols, and amino acids. It also utilized methanol and aromatic compounds. The surfaces of both organisms were covered by blebs and vesicles. 16S rRNA analyses placed both organisms in the gamma-3 subclass of the phylum Proteobacteria. They were related to Oceanospirillum linum, Marinomonas vaga, Pseudomonas putida, and Halomonas elongata, although a close association with any of these bacteria was not found. The guanine-plus-cytosine contents of strain IRE-31T and KW-40T were 57.6 and 54.9 mol%, respectively. On the basis of 16S rRNA sequence and phenotypic characterizations, these isolates were different enough so that they could be considered members of new genera. Thus, the following two new genera and species are proposed: Microbulbifer hydrolyticus, with type strain IRE-31 (= ATCC 700072), and Marinobacterium georgiense, with type strain KW-40 (= ATCC 700074).

Collaboration


Dive into the José M. González's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Pedrós-Alió

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep M. Gasol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ronald P. Kiene

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Laura Gómez-Consarnau

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramunas Stepanauskas

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar

Isabel Ferrera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge