Laura Gómez-Consarnau
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Gómez-Consarnau.
Nature | 2007
Laura Gómez-Consarnau; José M. González; Montserrat Coll-Lladó; Pontus Gourdon; Torbjörn Pascher; Richard Neutze; Carlos Pedrós-Alió; Jarone Pinhassi
Proteorhodopsins are bacterial light-dependent proton pumps. Their discovery within genomic material from uncultivated marine bacterioplankton caused considerable excitement because it indicated a potential phototrophic function within these organisms, which had previously been considered strictly chemotrophic. Subsequent studies established that sequences encoding proteorhodopsin are broadly distributed throughout the world’s oceans. Nevertheless, the role of proteorhodopsins in native marine bacteria is still unknown. Here we show, from an analysis of the complete genomes of three marine Flavobacteria, that cultivated bacteria in the phylum Bacteroidetes, one of the principal components of marine bacterioplankton, contain proteorhodopsin. Moreover, growth experiments in both natural and artificial seawater (low in labile organic matter, which is typical of the world’s oceans) establish that exposure to light results in a marked increase in the cell yield of one such bacterium (Dokdonia sp. strain MED134) when compared with cells grown in darkness. Thus, our results show that the phototrophy conferred by proteorhodopsin can provide critical amounts of energy, not only for respiration and maintenance but also for active growth of marine bacterioplankton in their natural environment.
Proceedings of the National Academy of Sciences of the United States of America | 2008
José M. González; Beatriz Fernández-Gómez; Antoni Fernández-Guerra; Laura Gómez-Consarnau; Olga Sánchez; Montserrat Coll-Lladó; Javier Campo; Lorena Escudero; Raquel Rodríguez-Martínez; Laura Alonso-Sáez; Mikel Latasa; Ian T. Paulsen; Olga I. Nedashkovskaya; Itziar Lekunberri; Jarone Pinhassi; Carlos Pedrós-Alió
Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.
PLOS Biology | 2010
Laura Gómez-Consarnau; Neelam Akram; Kristoffer Lindell; Anders Pedersen; Richard Neutze; Debra L. Milton; José M. González; Jarone Pinhassi
Mutational analysis provides direct evidence for the link between proteorhodopsin light-harvesting and enhanced survival of marine bacteria.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Sergio A. Sañudo-Wilhelmy; Lynda Cutter; Reginaldo Durazo; Emily A. Smail; Laura Gómez-Consarnau; Eric A. Webb; Maria G. Prokopenko; William M. Berelson; David M. Karl
B vitamins are some of the most commonly required biochemical cofactors in living systems. Therefore, cellular metabolism of marine vitamin-requiring (auxotrophic) phytoplankton and bacteria would likely be significantly compromised if B vitamins (thiamin B1, riboflavin B2, pyridoxine B6, biotin B7, and cobalamin B12) were unavailable. However, the factors controlling the synthesis, ambient concentrations, and uptake of these key organic compounds in the marine environment are still not well understood. Here, we report vertical distributions of five B vitamins (and the amino acid methionine) measured simultaneously along a latitudinal gradient through the contrasting oceanographic regimes of the southern California-Baja California coast in the Northeast Pacific margin. Although vitamin concentrations ranged from below the detection limits of our technique to 30 pM for B2 and B12 and to ∼500 pM for B1, B6, and B7, each vitamin showed a different geographical and depth distribution. Vitamin concentrations were independent of each other and of inorganic nutrient levels, enriched primarily in the upper mesopelagic zone (depth of 100–300 m), and associated with water mass origin. Moreover, vitamin levels were below our detection limits (ranging from ≤0.18 pM for B12 to ≤0.81 pM for B1) in extensive areas (100s of kilometers) of the coastal ocean, and thus may exert important constraints on the taxonomic composition of phytoplankton communities, and potentially also on rates of primary production and carbon sequestration.
Annual Review of Marine Science | 2014
Sergio A. Sañudo-Wilhelmy; Laura Gómez-Consarnau; Christopher Suffridge; Eric A. Webb
The soluble B vitamins (B1, B7, and B12) have long been recognized as playing a central metabolic role in marine phytoplankton and bacteria; however, the importance of these organic external metabolites in marine ecology has been largely disregarded, as most research has focused on inorganic nutrients and trace metals. Using recently available genomic data combined with culture-based surveys of vitamin auxotrophy (i.e., vitamin requirements), we show that this auxotrophy is widespread in the marine environment and occurs in both autotrophs and heterotrophs residing in oligotrophic and eutrophic environments. Our analysis shows that vitamins originate from the activities of some bacteria and algae and that taxonomic changes observed in marine phytoplankton communities could be the result of their specific vitamin requirements and/or vitamin availability. Dissolved vitamin concentration measurements show that large areas of the world ocean are devoid of B vitamins, suggesting that vitamin limitation could be important for the efficiency of carbon and nitrogen fixation in those regions.
Environmental Microbiology | 2009
Ruth-Anne Sandaa; Laura Gómez-Consarnau; Jarone Pinhassi; Lasse Riemann; Andrea Malits; Markus G. Weinbauer; Josep M. Gasol; T. Frede Thingstad
We demonstrate here results showing that bottom-up and top-down control mechanisms can operate simultaneously and in concert in marine microbial food webs, controlling prokaryote diversity by a combination of viral lysis and substrate limitation. Models in microbial ecology predict that a shift in the type of bacterial growth rate limitation is expected to have a major effect on species composition within the community of bacterial hosts, with a subsequent shift in the composition of the viral community. Only moderate effects would, however, be expected in the absolute number of coexisting virus-host pairs. We investigated these relationships in nutrient-manipulated systems, under simulated in situ conditions. There was a strong correlation in the clustering of the viral and bacterial community data supporting the existence of an important link between the bacterial and viral communities. As predicted, the total number of viral populations was the same in all treatments, while the composition of the viral community varied. Our results support the theoretical prediction that there is one control mechanism for the number of niches for coexisting virus-host pairs (top-down control), and another mechanism that controls which virus-host pairs occupy these niches (bottom-up control).
Applied and Environmental Microbiology | 2011
José M. González; Jarone Pinhassi; Beatriz Fernández-Gómez; Montserrat Coll-Lladó; Mónica González-Velázquez; Pere Puigbò; Sebastian Jaenicke; Laura Gómez-Consarnau; Antoni Fernández-Guerra; Alexander Goesmann; Carlos Pedrós-Alió
ABSTRACT Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsin-containing bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle.
PLOS ONE | 2013
Thomas Riedel; Laura Gómez-Consarnau; Jürgen Tomasch; Madeleine Martin; Michael Jarek; José M. González; Stefan Spring; Meike Rohlfs; Thorsten Brinkhoff; Heribert Cypionka; Markus Göker; Anne Fiebig; Johannes C. Klein; Alexander Goesmann; Jed A. Fuhrman; Irene Wagner-Döbler
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
The ISME Journal | 2016
Laura Gómez-Consarnau; José M. González; Thomas Riedel; Sebastian Jaenicke; Irene Wagner-Döbler; Sergio A. Sañudo-Wilhelmy; Jed A. Fuhrman
Proteorhodopsins (PR) are light-driven proton pumps widely distributed in bacterioplankton. Although they have been thoroughly studied for more than a decade, it is still unclear how the proton motive force (pmf) generated by PR is used in most organisms. Notably, very few PR-containing bacteria show growth enhancement in the light. It has been suggested that the presence of specific functions within a genome may define the different PR-driven light responses. Thus, comparing closely related organisms that respond differently to light is an ideal setup to identify the mechanisms involved in PR light-enhanced growth. Here, we analyzed the transcriptomes of three PR-harboring Flavobacteria strains of the genus Dokdonia: Dokdonia donghaensis DSW-1T, Dokdonia MED134 and Dokdonia PRO95, grown in identical seawater medium in light and darkness. Although only DSW-1T and MED134 showed light-enhanced growth, all strains expressed their PR genes at least 10 times more in the light compared with dark. According to their genomes, DSW-1T and MED134 are vitamin-B1 auxotrophs, and their vitamin-B1 TonB-dependent transporters (TBDT), accounted for 10–18% of all pmf-dependent transcripts. In contrast, the expression of vitamin-B1 TBDT was 10 times lower in the prototroph PRO95, whereas its vitamin-B1 synthesis genes were among the highest expressed. Our data suggest that light-enhanced growth in DSW-1T and MED134 derives from the use of PR-generated pmf to power the uptake of vitamin-B1, essential for central carbon metabolism, including the TCA cycle. Other pmf-generating mechanisms available in darkness are probably insufficient to power transport of enough vitamin-B1 to support maximum growth of these organisms.
Environmental Microbiology Reports | 2015
Camilla Fahlgren; Laura Gómez-Consarnau; Julia Zábori; Markus V. Lindh; Radovan Krejci; E. Monica Mårtensson; Douglas Nilsson; Jarone Pinhassi
Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria.