Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. López-Novoa is active.

Publication


Featured researches published by José M. López-Novoa.


Embo Molecular Medicine | 2009

Inflammation and EMT: an alliance towards organ fibrosis and cancer progression

José M. López-Novoa; M. Angela Nieto

Recent advances in our understanding of the molecular pathways that govern the association of inflammation with organ fibrosis and cancer point to the epithelial to mesenchymal transition (EMT) as the common link in the progression of these devastating diseases. The EMT is a crucial process in the development of different tissues in the embryo and its reactivation in the adult may be regarded as a physiological attempt to control inflammatory responses and to ‘heal’ damaged tissue. However, in pathological contexts such as in tumours or during the development of organ fibrosis, this healing response adopts a sinister nature, steering these diseases towards metastasis and organ failure. Importantly, the chronic inflammatory microenvironment common to fibrotic and cancer cells emerges as a decisive factor in the induction of the pathological EMT.


Kidney International | 2011

New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view

José M. López-Novoa; Yaremi Quiros; Laura Vicente Vicente; Ana I. Morales; Francisco J. López-Hernández

Nephrotoxicity is one of the most important side effects and therapeutical limitations of aminoglycoside antibiotics, especially gentamicin. Despite rigorous patient monitoring, nephrotoxicity appears in 10-25% of therapeutic courses. Traditionally, aminoglycoside nephrotoxicity has been considered to result mainly from tubular damage. Both lethal and sub-lethal alterations in tubular cells handicap reabsorption and, in severe cases, may lead to a significant tubular obstruction. However, a reduced glomerular filtration is necessary to explain the symptoms of the disease. Reduced filtration is not solely the result of tubular obstruction and tubular malfunction, resulting in tubuloglomerular feedback activation; renal vasoconstriction and mesangial contraction are also crucial to fully explain aminoglycoside nephrotoxicity. This review critically presents an integrative view on the interactions of tubular, glomerular, and vascular effects of gentamicin, in the context of the most recent information available. Moreover, it discusses therapeutic perspectives for prevention of aminoglycoside nephrotoxicity derived from the pathophysiological knowledge.


Biochimica et Biophysica Acta | 2009

The emerging role of TGF-β superfamily coreceptors in cancer

Carmelo Bernabeu; José M. López-Novoa; Miguel Quintanilla

The transforming growth factor beta (TGF-beta) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-beta coreceptors endoglin and betaglycan are emerging as modulators of the TGF-beta response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.


Nature Medicine | 2015

Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease

M. Teresa Grande; Berta Sánchez-Laorden; Cristina López-Blau; Cristina A. de Frutos; Agnès Boutet; Miguel Arévalo; R. Grant Rowe; Stephen J. Weiss; José M. López-Novoa; M. Angela Nieto

Progressive kidney fibrosis contributes greatly to end-stage renal failure, and no specific treatment is available to preserve organ function. During renal fibrosis, myofibroblasts accumulate in the interstitium of the kidney, leading to massive deposition of extracellular matrix and organ dysfunction. The origin of myofibroblasts is manifold, but the contribution of an epithelial-to-mesenchymal transition (EMT) undergone by renal epithelial cells during kidney fibrosis is still debated. We show that the reactivation of Snai1 (encoding snail family zinc finger 1, known as Snail1) in mouse renal epithelial cells is required for the development of fibrosis in the kidney. Damage-mediated Snail1 reactivation induces a partial EMT in tubular epithelial cells that, without directly contributing to the myofibroblast population, relays signals to the interstitium to promote myofibroblast differentiation and fibrogenesis and to sustain inflammation. We also show that Snail1-induced fibrosis can be reversed in vivo and that obstructive nephropathy can be therapeutically ameliorated in mice by targeting Snail1 expression. These results reconcile conflicting data on the role of the EMT in renal fibrosis and provide avenues for the design of novel anti-fibrotic therapies.


Nature Reviews Nephrology | 2009

Fibroblast activation and myofibroblast generation in obstructive nephropathy

María T. Grande; José M. López-Novoa

Obstructive nephropathy is a major cause of renal failure, particularly in newborn babies and children. After urinary tract obstruction, and under the influence of mechanical forces and cytokines produced by tubular cells and cells that have infiltrated the interstitium, resident fibroblasts undergo activation and myofibroblasts are generated from bone-marrow-derived cells, pericytes and endothelial cells. In addition, selected tubular epithelial cells can become fibroblast-like cells via epithelial–mesenchymal transition. This transition is characterized by downregulation of epithelial marker proteins such as E-cadherin, zonula occludens 1 and cytokeratin; loss of cell-to-cell adhesion; upregulation of mesenchymal markers including vimentin, α-smooth muscle actin and fibroblast-specific protein 1; basement membrane degradation; and migration to the interstitial compartment. All the events of epithelial–mesenchymal transition are strictly regulated by complex signaling pathways. Myofibroblasts and activated fibroblasts proliferate and produce large amounts of extracellular matrix, which accumulates in the tubular interstitium; together with tubular atrophy, this accumulation leads to interstitial fibrosis. This Review examines the molecular mechanisms of fibroblast activation and epithelial–mesenchymal transition, processes that seem to be promising targets for the prevention, or even reversal, of interstitial fibrosis and renal dysfunction associated with obstructive nephropathy.


Kidney International | 2010

Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway

Ana I. Morales; Dominique Detaille; Marta Prieto; Angel Puente; Elsa Briones; Miguel Arévalo; Xavier Leverve; José M. López-Novoa; Mohamad-Yehia El-Mir

The antidiabetic drug metformin can diminish apoptosis induced by oxidative stress in endothelial cells and prevent vascular dysfunction even in nondiabetic patients. Here we tested whether it has a beneficial effect in a rat model of gentamicin toxicity. Mitochondrial analysis, respiration intensity, levels of reactive oxygen species, permeability transition, and cytochrome c release were assessed 3 and 6 days after gentamicin administration. Metformin treatment fully blocked gentamicin-mediated acute renal failure. This was accompanied by a lower activity of N-acetyl-beta-D-glucosaminidase, together with a decrease of lipid peroxidation and increase of antioxidant systems. Metformin also protected the kidney from histological damage 6 days after gentamicin administration. These in vivo markers of kidney dysfunction and their correction by metformin were complemented by in vitro studies of mitochondrial function. We found that gentamicin treatment depleted respiratory components (cytochrome c, NADH), probably due to the opening of mitochondrial transition pores. These injuries, partly mediated by a rise in reactive oxygen species from the electron transfer chain, were significantly decreased by metformin. Thus, our study suggests that pleiotropic effects of metformin can lessen gentamicin nephrotoxicity and improve mitochondrial homeostasis.


Cell and Tissue Research | 2012

Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects.

Francisco J. López-Hernández; José M. López-Novoa

Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.


Journal of Cell Science | 2003

CD105 prevents apoptosis in hypoxic endothelial cells

Chenggang Li; Razao Issa; Patricia Kumar; Ian N. Hampson; José M. López-Novoa; Carmelo Bernabeu; Shant Kumar

CD105, a marker of endothelial cells, is abundantly expressed in tissues undergoing angiogenesis and is a receptor for transforming growth factorβ. The pivotal role of CD105 in the vascular system was demonstrated by the severe vascular defects that occur in CD105-knockout mice, but the exact mechanisms for CD105 regulation of vascular development have not been fully elucidated. In light of the function of CD105 and the importance of hypoxia in neovascularisation, we speculated that CD105 is involved in hypoxia-initiated angiogenesis. Using tissue-cultured human microvascular endothelial cells, we have investigated the effects of hypoxic stress on CD105 gene expression. Hypoxia induced a significant increase in membrane-bound and secreted CD105 protein levels. CD105 mRNA and promoter activity were also markedly elevated, the latter returning to the basal level after 16 hours of hypoxic stress. Hypoxia induced cell cycle arrest at the G0/G1 phases and massive cell apoptosis after 24 hours through a reduction in the Bcl-2 to Bax ratio, downregulation of Bcl-XL and Mcl-1, and upregulation of caspase-3 and caspase-8. The consequence of CD105 upregulation was revealed using an antisense approach and a TUNEL assay. Suppression of CD105 increased cell apoptosis under hypoxic stress in the absence of TGFβ1. Furthermore, hypoxia and TGFβ1 synergistically induced apoptosis in the CD105-deficient cells but not in the control cells. We conclude that hypoxia is a potent stimulus for CD105 gene expression in vascular endothelial cells, which in turn attenuates cell apoptosis and thus contributes to angiogenesis.


The FASEB Journal | 2004

Endoglin regulates nitric oxide-dependent vasodilatation

Mirjana Jerkic; Juan V. Rivas-Elena; Marta Prieto; Rosalía Carrón; Francisco Sanz-Rodríguez; Fernando Pérez-Barriocanal; Alicia Rodríguez-Barbero; Carmelo Bernabeu; José M. López-Novoa

Endoglin is a membrane glycoprotein that plays an important role in cardiovascular development and angiogenesis. We examined the role of endoglin in the control of vascular tone by measuring nitric oxide (NO)‐dependent vasodilation in haploinsufficient mice (Eng+/−) and their Eng+/+ littermates. The vasodilatory effect of acetylcholine, bradykinin, and sodium nitroprusside was assessed in anesthetized mice; in isolated, perfused hindlimbs; and in aortic rings. The substantial hypotensive and vasodilatory response induced by acetylcholine and bradykinin in Eng+/+ was markedly reduced in Eng+/− mice. Both kinds of animals had similar responses to sodium nitroprusside, suggesting that the deficient vasodilatory effect is not due to a NO response impairment. Urinary and plasma concentrations of nitrites, a NO metabolite, were lower in Eng+/− than in Eng+/+ mice. The levels of endothelial nitric oxide synthase (eNOS) in kidneys and femoral arteries were about half in Eng+/− than in Eng+/+ mice and were also reduced in primary cultures of aortic endothelial cells from Eng+/− compared with those from Eng+/+ mice. Furthermore, overexpression or suppression of endoglin in cultured cells induced a marked increase or decrease in the protein levels of eNOS, respectively. Thus, our results in vivo and in vitro demonstrate a relationship between endoglin and NO‐dependent vasodilation mediated by the regulation of eNOS expression.


Toxicological Sciences | 2011

An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin

Yaremi Quiros; Laura Vicente-Vicente; Ana I. Morales; José M. López-Novoa; Francisco J. López-Hernández

Gentamicin is an aminoglycoside antibiotic widely used against infections by Gram-negative microorganisms. Nephrotoxicity is the main limitation to its therapeutic efficacy. Gentamicin nephrotoxicity occurs in 10-20% of therapeutic regimes. A central aspect of gentamicin nephrotoxicity is its tubular effect, which may range from a mere loss of the brush border in epithelial cells to an overt tubular necrosis. Tubular cytotoxicity is the consequence of many interconnected actions, triggered by drug accumulation in epithelial tubular cells. Accumulation results from the presence of the endocytic receptor complex formed by megalin and cubulin, which transports proteins and organic cations inside the cells. Gentamicin then accesses and accumulates in the endosomal compartment, the Golgi and endoplasmic reticulum (ER), causes ER stress, and unleashes the unfolded protein response. An excessive concentration of the drug over an undetermined threshold destabilizes intracellular membranes and the drug redistributes through the cytosol. It then acts on mitochondria to unleash the intrinsic pathway of apoptosis. In addition, lysosomal cathepsins lose confinement and, depending on their new cytosolic concentration, they contribute to the activation of apoptosis or produce a massive proteolysis. However, other effects of gentamicin have also been linked to cell death, such as phospholipidosis, oxidative stress, extracellular calcium-sensing receptor stimulation, and energetic catastrophe. Besides, indirect effects of gentamicin, such as reduced renal blood flow and inflammation, may also contribute or amplify its cytotoxicity. The purpose of this review was to critically integrate all these effects and discuss their relative contribution to tubular cell death.

Collaboration


Dive into the José M. López-Novoa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo Bernabeu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Flores

University of Salamanca

View shared research outputs
Researchain Logo
Decentralizing Knowledge