Jose M. Pozo
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jose M. Pozo.
IEEE Transactions on Medical Imaging | 2007
Raul Daniel Millan; Laura Dempere-Marco; Jose M. Pozo; Juan R. Cebral; Alejandro F. Frangi
Rupture of intracranial saccular aneurysms is the most common cause of spontaneous subarachnoid hemorrhage, which has significant morbidity and mortality. Although there is still controversy regarding the decision on which unruptured aneurysms should be treated, this is based primarily on their size. Nonetheless, many large lesions do not rupture whereas some small ones do. It is commonly accepted that hemodynamical factors are important to better understand the natural history of cerebral aneurysms. However, it might not always be practical to carry out a detailed computational analysis of such factors if a prompt assessment is required. Since shape is likely to be dependent on the balance between hemodynamic forces and the aneurysmal surrounding environment, an appropriate morphological 3-D characterization is likely to provide a practical surrogate to quickly evaluate the risk of rupture. In this paper, an efficient and novel methodology for 3-D shape characterization of cerebral aneurysms is described. The aneurysms are isolated by taking into account a portion of their adjacent vessels. Two methods to characterize the morphology of the aneurysms models using moment invariants have been considered: geometrical moment invariants (GMI) and Zernike moment invariants (ZMI). The results have been validated in a database containing 53 patients with a total of 31 ruptured aneurysms and 24 unruptured aneurysms. It has been found that ZMI indices are more robust than GMI, and seem to provide a reliable way to discriminate between ruptured and unruptured aneurysms. Correct rupture prediction rates of sime80% were achieved in contrast to 66% that is found when the aspect ratio index is considered.
Medical Physics | 2010
Hrvoje Bogunovic; Jose M. Pozo; Maria-Cruz Villa-Uriol; Charles B. L. M. Majoie; René van den Berg; Hugo A. F. Gratama van Andel; Juan Macho; Jordi Blasco; Luis San Román; Alejandro F. Frangi
PURPOSE To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. METHODS Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA and TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. RESULTS Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. CONCLUSIONS The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.
Interface Focus | 2011
Maria-Cruz Villa-Uriol; G. Berti; D. R. Hose; Alberto Marzo; A. Chiarini; Justin Penrose; Jose M. Pozo; J. G. Schmidt; Pankaj Singh; R. Lycett; Ignacio Larrabide; Alejandro F. Frangi
Cerebral aneurysms are a multi-factorial disease with severe consequences. A core part of the European project @neurIST was the physical characterization of aneurysms to find candidate risk factors associated with aneurysm rupture. The project investigated measures based on morphological, haemodynamic and aneurysm wall structure analyses for more than 300 cases of ruptured and unruptured aneurysms, extracting descriptors suitable for statistical studies. This paper deals with the unique challenges associated with this task, and the implemented solutions. The consistency of results required by the subsequent statistical analyses, given the heterogeneous image data sources and multiple human operators, was met by a highly automated toolchain combined with training. A testimonial of the successful automation is the positive evaluation of the toolchain by over 260 clinicians during various hands-on workshops. The specification of the analyses required thorough investigations of modelling and processing choices, discussed in a detailed analysis protocol. Finally, an abstract data model governing the management of the simulation-related data provides a framework for data provenance and supports future use of data and toolchain. This is achieved by enabling the easy modification of the modelling approaches and solution details through abstract problem descriptions, removing the need of repetition of manual processing work.
IEEE Transactions on Medical Imaging | 2009
Chong Zhang; Maria-Cruz Villa-Uriol; M. De Craene; Jose M. Pozo; Alejandro F. Frangi
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over one cardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying B-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneous morphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantom experiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Medical Image Analysis | 2012
Hrvoje Bogunovic; Jose M. Pozo; Rubén Cárdenes; Maria-Cruz Villa-Uriol; Raphaël Blanc; Michel Piotin; Alejandro F. Frangi
The geometry of the carotid siphon has a large variability between subjects, which has prompted its study as a potential geometric risk factor for the onset of vascular pathologies on and off the internal carotid artery (ICA). In this work, we present a methodology for an objective and extensive geometric characterization of carotid siphon parameterized by a set of anatomical landmarks. We introduce a complete and automated characterization pipeline. Starting from the segmentation of vasculature from angiographic image and its centerline extraction, we first identify ICA by characterizing vessel tree bifurcations and training a support vector machine classifier to detect ICA terminal bifurcation. On ICA centerline curve, we detect anatomical landmarks of carotid siphon by modeling it as a sequence of four bends and selecting their centers and interfaces between them. Bends are detected from the trajectory of the curvature vector expressed in the parallel transport frame of the curve. Finally, using the detected landmarks, we characterize the geometry in two complementary ways. First, with a set of local and global geometric features, known to affect hemodynamics. Second, using large deformation diffeomorphic metric curve mapping (LDDMCM) to quantify pairwise shape similarity. We processed 96 images acquired with 3D rotational angiography. ICA identification had a cross-validation success rate of 99%. Automated landmarking was validated by computing limits of agreement with the reference taken to be the locations of the manually placed landmarks averaged across multiple observers. For all but one landmark, either the bias was not statistically significant or the variability was within 50% of the inter-observer one. The subsequently computed values of geometric features and LDDMCM were commensurate to the ones obtained with manual landmarking. The characterization based on pair-wise LDDMCM proved better in classifying the carotid siphon shape classes than the one based on geometric features. The proposed characterization provides a rich description of geometry and is ready to be applied in the search for geometric risk factors of the carotid siphon.
Computerized Medical Imaging and Graphics | 2016
Jianhua Yao; Joseph E. Burns; Daniel Forsberg; Alexander Seitel; Abtin Rasoulian; Purang Abolmaesumi; Kerstin Hammernik; Martin Urschler; Bulat Ibragimov; Robert Korez; Tomaž Vrtovec; Isaac Castro-Mateos; Jose M. Pozo; Alejandro F. Frangi; Ronald M. Summers; Shuo Li
A multiple center milestone study of clinical vertebra segmentation is presented in this paper. Vertebra segmentation is a fundamental step for spinal image analysis and intervention. The first half of the study was conducted in the spine segmentation challenge in 2014 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational Spine Imaging (CSI 2014). The objective was to evaluate the performance of several state-of-the-art vertebra segmentation algorithms on computed tomography (CT) scans using ten training and five testing dataset, all healthy cases; the second half of the study was conducted after the challenge, where additional 5 abnormal cases are used for testing to evaluate the performance under abnormal cases. Dice coefficients and absolute surface distances were used as evaluation metrics. Segmentation of each vertebra as a single geometric unit, as well as separate segmentation of vertebra substructures, was evaluated. Five teams participated in the comparative study. The top performers in the study achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine for healthy cases, and 0.88 in the upper thoracic, 0.89 in the lower thoracic and 0.92 in the lumbar spine for osteoporotic and fractured cases. The strengths and weaknesses of each method as well as future suggestion for improvement are discussed. This is the first multi-center comparative study for vertebra segmentation methods, which will provide an up-to-date performance milestone for the fast growing spinal image analysis and intervention.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011
Jose M. Pozo; Maria-Cruz Villa-Uriol; Alejandro F. Frangi
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N9 to N6. The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N3. In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N4, while the previously proposed algorithm is of order N6. The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
IEEE Transactions on Medical Imaging | 2013
Hrvoje Bogunovic; Jose M. Pozo; Rubén Cárdenes; Luis San Román; Alejandro F. Frangi
Anatomical labeling of the cerebral arteries forming the Circle of Willis (CoW) enables inter-subject comparison, which is required for geometric characterization and discovering risk factors associated with cerebrovascular pathologies. We present a method for automated anatomical labeling of the CoW by detecting its main bifurcations. The CoW is modeled as rooted attributed relational graph, with bifurcations as its vertices, whose attributes are characterized as points on a Riemannian manifold. The method is first trained on a set of pre-labeled examples, where it learns the variability of local bifurcation features as well as the variability in the topology. Then, the labeling of the target vasculature is obtained as maximum a posteriori probability (MAP) estimate where the likelihood of labeling individual bifurcations is regularized by the prior structural knowledge of the graph they span. The method was evaluated by cross-validation on 50 subjects, imaged with magnetic resonance angiography, and showed a mean detection accuracy of 95%. In addition, besides providing the MAP, the method can rank the labelings. The proposed method naturally handles anatomical structural variability and is demonstrated to be suitable for labeling arterial segments of the CoW.
IEEE Transactions on Medical Imaging | 2011
Rubén Cárdenes; Jose M. Pozo; Hrvoje Bogunovic; Ignacio Larrabide; Alejandro F. Frangi
A new automatic approach for saccular intracranial aneurysm isolation is proposed in this work. Due to the inter- and intra-observer variability in manual delineation of the aneurysm neck, a definition based on a minimum cost path around the aneurysm sac is proposed that copes with this variability and is able to make consistent measurements along different data sets, as well as to automate and speedup the analysis of cerebral aneurysms. The method is based on the computation of a minimal path along a scalar field obtained on the vessel surface, to find the aneurysm neck in a robust and fast manner. The computation of the scalar field on the surface is obtained using a fast marching approach with a speed function based on the exponential of the distance from the centerline bifurcation between the aneurysm dome and the parent vessels. In order to assure a correct topology of the aneurysm sac, the neck computation is constrained to a region defined by a surface Voronoi diagram obtained from the branches of the vessel centerline. We validate this method comparing our results in 26 real cases with manual aneurysm isolation obtained using a cut-plane, and also with results obtained using manual delineations from three different observers by comparing typical morphological measures.
Medical Physics | 2010
Simone Balocco; Oscar Camara; Elio Vivas; Teresa Sola; Leopoldo Guimaraens; Hugo A. F. Gratama van Andel; Charles B. L. M. Majoie; Jose M. Pozo; Bart Bijnens; Alejandro F. Frangi
PURPOSE In this article, the authors studied the feasibility of estimating regional mechanical properties in cerebral aneurysms, integrating information extracted from imaging and physiological data with generic computational models of the arterial wall behavior. METHODS A data assimilation framework was developed to incorporate patient-specific geometries into a given biomechanical model, whereas wall motion estimates were obtained from applying registration techniques to a pair of simulated MR images and guided the mechanical parameter estimation. A simple incompressible linear and isotropic Hookean model coupled with computational fluid-dynamics was employed as a first approximation for computational purposes. Additionally, an automatic clustering technique was developed to reduce the number of parameters to assimilate at the optimization stage and it considerably accelerated the convergence of the simulations. Several in silico experiments were designed to assess the influence of aneurysm geometrical characteristics and the accuracy of wall motion estimates on the mechanical property estimates. Hence, the proposed methodology was applied to six real cerebral aneurysms and tested against a varying number of regions with different elasticity, different mesh discretization, imaging resolution, and registration configurations. RESULTS Several in silico experiments were conducted to investigate the feasibility of the proposed workflow, results found suggesting that the estimation of the mechanical properties was mainly influenced by the image spatial resolution and the chosen registration configuration. According to the in silico experiments, the minimal spatial resolution needed to extract wall pulsation measurements with enough accuracy to guide the proposed data assimilation framework was of 0.1 mm. CONCLUSIONS Current routine imaging modalities do not have such a high spatial resolution and therefore the proposed data assimilation framework cannot currently be used on in vivo data to reliably estimate regional properties in cerebral aneurysms. Besides, it was observed that the incorporation of fluid-structure interaction in a biomechanical model with linear and isotropic material properties did not have a substantial influence in the final results.