Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isaac Castro-Mateos is active.

Publication


Featured researches published by Isaac Castro-Mateos.


Computerized Medical Imaging and Graphics | 2016

A multi-center milestone study of clinical vertebral CT segmentation☆

Jianhua Yao; Joseph E. Burns; Daniel Forsberg; Alexander Seitel; Abtin Rasoulian; Purang Abolmaesumi; Kerstin Hammernik; Martin Urschler; Bulat Ibragimov; Robert Korez; Tomaž Vrtovec; Isaac Castro-Mateos; Jose M. Pozo; Alejandro F. Frangi; Ronald M. Summers; Shuo Li

A multiple center milestone study of clinical vertebra segmentation is presented in this paper. Vertebra segmentation is a fundamental step for spinal image analysis and intervention. The first half of the study was conducted in the spine segmentation challenge in 2014 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational Spine Imaging (CSI 2014). The objective was to evaluate the performance of several state-of-the-art vertebra segmentation algorithms on computed tomography (CT) scans using ten training and five testing dataset, all healthy cases; the second half of the study was conducted after the challenge, where additional 5 abnormal cases are used for testing to evaluate the performance under abnormal cases. Dice coefficients and absolute surface distances were used as evaluation metrics. Segmentation of each vertebra as a single geometric unit, as well as separate segmentation of vertebra substructures, was evaluated. Five teams participated in the comparative study. The top performers in the study achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine for healthy cases, and 0.88 in the upper thoracic, 0.89 in the lower thoracic and 0.92 in the lumbar spine for osteoporotic and fractured cases. The strengths and weaknesses of each method as well as future suggestion for improvement are discussed. This is the first multi-center comparative study for vertebra segmentation methods, which will provide an up-to-date performance milestone for the fast growing spinal image analysis and intervention.


Frontiers in Bioengineering and Biotechnology | 2015

On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

Andrea Malandrino; José M. Pozo; Isaac Castro-Mateos; Alejandro F. Frangi; Marc van Rijsbergen; Keita Ito; Hans-Joachim Wilke; Tien Tuan Dao; Marie-Christine Ho Ba Tho; Jérôme Noailly

Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration.


IEEE Transactions on Medical Imaging | 2015

Statistical Interspace Models (SIMs): Application to Robust 3D Spine Segmentation

Isaac Castro-Mateos; Jose M. Pozo; Marco Pereañez; Karim Lekadir; Áron Lazáry; Alejandro F. Frangi

Statistical shape models (SSM) are used to introduce shape priors in the segmentation of medical images. However, such models require large training datasets in the case of multi-object structures, since it is required to obtain not only the individual shape variations but also the relative position and orientation among objects. A solution to overcome this limitation is to model each individual shape independently. However, this approach does not take into account the relative position, orientations and shapes among the parts of an articulated object, which may result in unrealistic geometries, such as with object overlaps. In this article, we propose a new Statistical Model, the Statistical Interspace Model (SIM), which provides information about the interaction of all the individual structures by modeling the interspace between them. The SIM is described using relative position vectors between pair of points that belong to different objects that are facing each other. These vectors are divided into their magnitude and direction, each of these groups modeled as independent manifolds. The SIM was included in a segmentation framework that contains an SSM per individual object. This framework was tested using three distinct types of datasets of CT images of the spine. Results show that the SIM completely eliminated the inter-process overlap while improving the segmentation accuracy.


IEEE Transactions on Medical Imaging | 2015

Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models

Marco Pereañez; Karim Lekadir; Isaac Castro-Mateos; Jose M. Pozo; Áron Lazáry; Alejandro F. Frangi

Detailed segmentation of the vertebrae is an important pre-requisite in various applications of image-based spine assessment, surgery and biomechanical modeling. In particular, accurate segmentation of the processes is required for image-guided interventions, for example for optimal placement of bone grafts between the transverse processes. Furthermore, the geometry of the processes is now required in musculoskeletal models due to their interaction with the muscles and ligaments. In this paper, we present a new method for detailed segmentation of both the vertebral bodies and processes based on statistical shape decomposition and conditional models. The proposed technique is specifically developed with the aim to handle the complex geometry of the processes and the large variability between individuals. The key technical novelty in this work is the introduction of a part-based statistical decomposition of the vertebrae, such that the complexity of the subparts is effectively reduced, and model specificity is increased. Subsequently, in order to maintain the statistical and anatomic coherence of the ensemble, conditional models are used to model the statistical inter-relationships between the different subparts. For shape reconstruction and segmentation, a robust model fitting procedure is used to exclude improbable inter-part relationships in the estimation of the shape parameters. Segmentation results based on a dataset of 30 healthy CT scans and a dataset of 10 pathological scans show a point-to-surface error improvement of 20% and 17% respectively, and the potential of the proposed technique for detailed vertebral modeling.


Archive | 2015

3D Vertebra Segmentation by Feature Selection Active Shape Model

Isaac Castro-Mateos; Jose M. Pozo; Áron Lazáry; Alejandro F. Frangi

In this paper, a former method has been adapted to perform vertebra segmentations for the 2nd Workshop on Computational Methods and Clinical Applications for Spine Imaging (CSI 2014). A statistical Shape Models (SSM) of each lumbar vertebra was created for the segmentation step. From manually placed intervertebral discs centres, the similarity parameters are computed to initialise the vertebra shapes. The segmentation is performed by iteratively deforming a mesh inside the image intensity and then projecting it into the SSM space until convergence. Afterwards, a relaxation step based on B-spline is applied to overcome the SSM rigidity. The deformation of the mesh, within the image intensity, is performed by displacing each landmark along the normal direction of the surface mesh at the landmark position seeking a minimum of a cost function based on a set of trained features. The organisers tested the performance of our method with a dataset of five patients, achieving a global mean Dice Similarity Index (DSI) of 93.4 %. Results were consistent and accurate along the lumbar spine 93.8, 93.9, 93.7, 93.4 and 92.1 %, from L1 to L5.


Physics in Medicine and Biology | 2014

3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images

Isaac Castro-Mateos; Jose M. Pozo; Peter Eltes; Luis Del Rio; Áron Lazáry; Alejandro F. Frangi

Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy.The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68xa0mm in the annulus segmentation and 1.88xa0mm in the nucleus, which are the best results with respect to the image resolution in the current literature.


Current Osteoporosis Reports | 2014

Statistical Shape and Appearance Models in Osteoporosis

Isaac Castro-Mateos; Jose M. Pozo; Timothy F. Cootes; J. Mark Wilkinson; Richard Eastell; Alejandro F. Frangi

Statistical models (SMs) of shape (SSM) and appearance (SAM) have been acquiring popularity in medical image analysis since they were introduced in the early 1990s. They have been primarily used for segmentation, but they are also a powerful tool for 3D reconstruction and classification. All these tasks may be required in the osteoporosis domain, where fracture detection and risk estimation are key to reducing the mortality and/or morbidity of this bone disease. In this article, we review the different applications of SSMs and SAMs in the context of osteoporosis, and it concludes with a discussion of their advantages and disadvantages for this application.


European Spine Journal | 2016

Intervertebral disc classification by its degree of degeneration from T2-weighted magnetic resonance images

Isaac Castro-Mateos; Rui Hua; Jose M. Pozo; Áron Lazáry; Alejandro F. Frangi

PurposeThe primary goal of this article is to achieve an automatic and objective method to compute the Pfirrmann’s degeneration grade of intervertebral discs (IVD) from MRI. This grading system is used in the diagnosis and management of patients with low back pain (LBP). In addition, biomechanical models, which are employed to assess the treatment on patients with LBP, require this grading value to compute proper material properties.Materials and methodsT2-weighted MR images of 48 patients were employed in this work. The 240 lumbar IVDs were divided into a training set (140) and a testing set (100). Three experts manually classified the whole set of IVDs using the Pfirrmann’s grading system and the ground truth was selected as the most voted value among them. The developed method employs active contour models to delineate the boundaries of the IVD. Subsequently, the classification is achieved using a trained Neural Network (NN) with eight designed features that contain shape and intensity information of the IVDs.ResultsThe classification method was evaluated using the testing set, resulting in a mean specificity (95.5xa0%) and sensitivity (87.3xa0%) comparable to those of every expert with respect to the ground truth.ConclusionsOur results show that the automatic method and humans perform equally well in terms of the classification accuracy. However, human annotations have inherent inter- and intra-observer variabilities, which lead to inconsistent assessments. In contrast, the proposed automatic method is objective, being only dependent on the input MRI.


Archive | 2015

Detailed Vertebral Segmentation Using Part-Based Decomposition and Conditional Shape Models

Marco Pereañez; Karim Lekadir; Corné Hoogendoorn; Isaac Castro-Mateos; Alejandro F. Frangi

With the advances in minimal invasive surgical procedures, accurate and detailed extraction of the vertebral boundaries is required. In practice, this is a difficult challenge due to the highly complex geometry of the vertebrae, in particular at the processes. This paper presents a statistical modeling approach for detailed vertebral segmentation based on part decomposition and conditional models. To this end, a Vononoi decomposition approach is employed to ensure that each of the main subparts the vertebrae is identified in the subdivision. The obtained shape constraints are effectively relaxed, allowing for an improved encoding of the fine details and shape variability at all the regions of the vertebrae. Subsequently, in order to maintain the statistical coherence of the ensemble, conditional models are used to model the statistical inter-relationships between the different subparts. For shape reconstruction and segmentation, a robust model fitting procedure is introduced to exclude outlying inter-part relationships in the estimation of the shape parameters. The experimental results based on a database of 30 CT scans show significant improvement in accuracy with respect to the state-of-the-art and the potential of the proposed technique for detailed vertebral modeling.


Proceedings of SPIE | 2014

2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

Isaac Castro-Mateos; Jose M. Pozo; Aron Lazary; Alejandro F. Frangi

Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

Collaboration


Dive into the Isaac Castro-Mateos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose M. Pozo

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Gooya

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Hua

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge