José Manuel Franco-Zorrilla
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Manuel Franco-Zorrilla.
The Plant Cell | 2011
Patricia Fernández-Calvo; Andrea Chini; Gemma Fernández-Barbero; José-Manuel Chico; Selena Gimenez-Ibanez; Jan Geerinck; Dominique Eeckhout; Fabian Schweizer; Marta Godoy; José Manuel Franco-Zorrilla; Laurens Pauwels; Erwin Witters; María Isabel Puga; Javier Paz-Ares; Alain Goossens; Philippe Reymond; Geert De Jaeger; Roberto Solano
This work identifies two transcription factors, MYC3 and MYC4, as targets of JAZ repressors and regulators of responses to jasmonate. It finds a specificity of transcription factor activity that could be a clue to understanding the diversity of JA-regulated responses. Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.
Plant Journal | 2012
Patricia Hornitschek; Markus V. Kohnen; Séverine Lorrain; Jacques Rougemont; Karin Ljung; Irene López-Vidriero; José Manuel Franco-Zorrilla; Roberto Solano; Martine Trevisan; Sylvain Pradervand; Ioannis Xenarios; Christian Fankhauser
Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.
Proceedings of the National Academy of Sciences of the United States of America | 2014
José Manuel Franco-Zorrilla; Irene López-Vidriero; José L. Carrasco; Marta Godoy; Pablo Vera; Roberto Solano
Significance We described the high-throughput identification of DNA-binding specificities of 63 plant transcription factors (TFs) and their relevance as cis-regulatory elements in vivo. Almost half of the TFs recognized secondary motifs partially or completely differing from their corresponding primary ones. Analysis of coregulated genes, transcriptomic data, and chromatin hypersensitive regions revealed the biological relevance of more than 80% of the binding sites identified. Our combined analysis allows the prediction of the function of a particular TF as activator or repressor through a particular DNA sequence. The data support the correlation between cis-regulatory elements in vivo and the sequence determined in vitro. Moreover, it provides a framework to explore regulatory networks in plants and contributes to decipher the transcriptional regulatory code. Transcription factors (TFs) regulate gene expression through binding to cis-regulatory specific sequences in the promoters of their target genes. In contrast to the genetic code, the transcriptional regulatory code is far from being deciphered and is determined by sequence specificity of TFs, combinatorial cooperation between TFs and chromatin competence. Here we addressed one of these determinants by characterizing the target sequence specificity of 63 plant TFs representing 25 families, using protein-binding microarrays. Remarkably, almost half of these TFs recognized secondary motifs, which in some cases were completely unrelated to the primary element. Analyses of coregulated genes and transcriptomic data from TFs mutants showed the functional significance of over 80% of all identified sequences and of at least one target sequence per TF. Moreover, combining the target sequence information with coexpression analysis we could predict the function of a TF as activator or repressor through a particular DNA sequence. Our data support the correlation between cis-regulatory elements and the sequence determined in vitro using the protein-binding microarray and provides a framework to explore regulatory networks in plants.
Plant Physiology | 2005
José Manuel Franco-Zorrilla; Ana C. Martín; Antonio Leyva; Javier Paz-Ares
Cytokinins control key processes during plant growth and development, and cytokinin receptors CYTOKININ RESPONSE 1/WOODEN LEG/ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/WOL/AHK4), AHK2, and AHK3 have been shown to play a crucial role in this control. The involvement of cytokinins in signaling the status of several nutrients, such as sugar, nitrogen, sulfur, and phosphate (Pi), has also been highlighted, although the full physiological relevance of this role remains unclear. To gain further insights into this aspect of cytokinin action, we characterized a mutant with reduced sensitivity to cytokinin repression of a Pi starvation-responsive reporter gene and show it corresponds to AHK3. As expected, ahk3 displayed reduced responsiveness to cytokinin in callus proliferation and plant growth assays. In addition, ahk3 showed reduced cytokinin repression of several Pi starvation-responsive genes and increased sucrose sensitivity. These effects of the ahk3 mutation were especially evident in combination with the cre1 mutation, indicating partial functional redundancy between these receptors. We examined the effect of these mutations on Pi-starvation responses and found that the double mutant is not significantly affected in long-distance systemic repression of these responses. Remarkably, we found that expression of many Pi-responsive genes is stimulated by sucrose in shoots and to a lesser extent in roots, and the sugar effect in shoots of Pi-starved plants was particularly enhanced in the cre1 ahk3 double mutant. Altogether, these results indicate the existence of multidirectional cross regulation between cytokinin, sugar, and Pi-starvation signaling, thus underlining the role of cytokinin signaling in nutrient sensing and the relative importance of Pi-starvation signaling in the control of plant metabolism and development.
Cell | 2014
D. Roeland Boer; Alejandra Freire-Rios; Willy A. M. van den Berg; Terrens Saaki; Iain W. Manfield; Stefan Kepinski; Irene López-Vidrieo; José Manuel Franco-Zorrilla; Sacco C. de Vries; Roberto Solano; Dolf Weijers; Miquel Coll
Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.
The Plant Cell | 2007
Pablo Catarecha; Ma Dolores Segura; José Manuel Franco-Zorrilla; Berenice García-Ponce; Mónica Lanza; Roberto Solano; Javier Paz-Ares; Antonio Leyva
The exceptional toxicity of arsenate [As(V)] is derived from its close chemical similarity to phosphate (Pi), which allows the metalloid to be easily incorporated into plant cells through the high-affinity Pi transport system. In this study, we identified an As(V)-tolerant mutant of Arabidopsis thaliana named pht1;1-3, which harbors a semidominant allele coding for the high-affinity Pi transporter PHT1;1. pht1;1-3 displays a slow rate of As(V) uptake that ultimately enables the mutant to accumulate double the arsenic found in wild-type plants. Overexpression of the mutant protein in wild-type plants provokes phenotypic effects similar to pht1;1-3 with regard to As(V) uptake and accumulation. In addition, gene expression analysis of wild-type and mutant plants revealed that, in Arabidopsis, As(V) represses the activation of genes specifically involved in Pi uptake, while inducing others transcriptionally regulated by As(V), suggesting that converse signaling pathways are involved in plant responses to As(V) and low Pi availability. Furthermore, the repression effect of As(V) on Pi starvation responses may reflect a regulatory mechanism to protect plants from the extreme toxicity of arsenic.
Proceedings of the National Academy of Sciences of the United States of America | 2014
María Isabel Puga; Isabel Mateos; Rajulu Charukesi; Zhiye Wang; José Manuel Franco-Zorrilla; Laura de Lorenzo; María Luisa Irigoyen; Simona Masiero; Regla Bustos; José A. Rodriguez; Antonio Leyva; Vicente Rubio; Hans Sommer; Javier Paz-Ares
Significance When P levels are low, plants activate an array of adaptive responses to increase efficient acquisition and use of phosphate (Pi), the form in which P is preferentially absorbed, and to protect themselves from Pi starvation stress. Considerable progress has been made recently in dissecting the plant Pi starvation signaling pathway. Nonetheless, little is known as to how Pi levels are perceived by plants. Here, we identify the nuclear protein SPX1 as a Pi-dependent inhibitor of DNA binding by PHOSPHATE STARVATION RESPONSE 1 (PHR1), a master regulator of Pi starvation responses. We show that the Pi dependence of SPX1 inhibition of PHR1 activity can be recreated in vitro using purified proteins, which indicates that the SPX1/PHR1 module links Pi sensing and signaling. To cope with growth in low-phosphate (Pi) soils, plants have evolved adaptive responses that involve both developmental and metabolic changes. PHOSPHATE STARVATION RESPONSE 1 (PHR1) and related transcription factors play a central role in the control of Pi starvation responses (PSRs). How Pi levels control PHR1 activity, and thus PSRs, remains to be elucidated. Here, we identify a direct Pi-dependent inhibitor of PHR1 in Arabidopsis, SPX1, a nuclear protein that shares the SPX domain with yeast Pi sensors and with several Pi starvation signaling proteins from plants. Double mutation of SPX1 and of a related gene, SPX2, resulted in molecular and physiological changes indicative of increased PHR1 activity in plants grown in Pi-sufficient conditions or after Pi refeeding of Pi-starved plants but had only a limited effect on PHR1 activity in Pi-starved plants. These data indicate that SPX1 and SPX2 have a cellular Pi-dependent inhibitory effect on PHR1. Coimmunoprecipitation assays showed that the SPX1/PHR1 interaction in planta is highly Pi-dependent. DNA-binding and pull-down assays with bacterially expressed, affinity-purified tagged SPX1 and ΔPHR1 proteins showed that SPX1 is a competitive inhibitor of PHR1 binding to its recognition sequence, and that its efficiency is highly dependent on the presence of Pi or phosphite, a nonmetabolizable Pi analog that can repress PSRs. The relative strength of the SPX1/PHR1 interaction is thus directly influenced by Pi, providing a link between Pi perception and signaling.
Plant Journal | 2011
Marta Godoy; José Manuel Franco-Zorrilla; Julián Pérez-Pérez; Juan Carlos Oliveros; Oscar Lorenzo; Roberto Solano
Transcriptional regulation depends on the specificity of transcription factors (TFs) recognizing cis regulatory sequences in the promoters of target genes. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies, revealing DNA motifs bound by a TF with high affinity. These strategies are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. Here we report on the development of a protein-binding microarray (PBM11) containing all possible double-stranded 11-mers for the determination of DNA-binding specificities of TFs. The large number of sequences in the PBM11 allows accurate and high-throughput quantification of TF-binding sites, outperforming previous methods. We applied this tool to determine binding site specificities of two Arabidopsis TFs, MYC2 and ERF1, rendering the G-box and the GCC-box, respectively, as their highest-affinity binding sites. In addition, we identified variants of the G-box recognized by MYC2 with high and medium affinity, whereas ERF1 only recognized GCC variants with low affinity, indicating that ERF1 binding to DNA has stricter base requirements than MYC2. Analysis of transcriptomic data revealed that high- and medium-affinity binding sites have biological significance, probably representing relevant cis-acting elements in vivo. Comparison of promoter sequences with putative orthologs from closely related species demonstrated a high degree of conservation of all the identified DNA elements. The combination of PBM11, transcriptomic data and phylogenomic footprinting provides a straightforward method for the prediction of biologically active cis-elements, and thus for identification of in vivo DNA targets of TFs.
The Plant Cell | 2001
Concepción Gómez-Mena; Manuel Piñeiro; José Manuel Franco-Zorrilla; Julio Salinas; George Coupland; José M. Martínez-Zapater
The time of flowering in Arabidopsis is controlled by multiple endogenous and environmental signals. Some of these signals promote the onset of flowering, whereas others repress it. We describe here the isolation and characterization of two allelic mutations that cause early flowering and define a new locus, EARLY BOLTING IN SHORT DAYS (EBS). Acceleration of flowering time in the ebs mutants is especially conspicuous under short-day photoperiods and results from a reduction of the adult vegetative phase of the plants. In addition to the early flowering phenotype, ebs mutants show a reduction in seed dormancy, plant size, and fertility. Double mutant analysis with gibberellin-deficient mutants indicates that both the early-flowering and the precocious-germination phenotypes require gibberellin biosynthesis. Analysis of the genetic interactions among ebs and several mutations causing late flowering shows that the ft mutant phenotype is epistatic over the early flowering of ebs mutants, suggesting that the precocious flowering of ebs requires the FT gene product. Finally, the ebs mutation causes an increase in the level of expression of the floral homeotic genes APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) and partially rescues the mutant floral phenotype of leafy-6 (lfy-6) mutants. These results suggest that EBS participates as a negative regulator in developmental processes such as germination, flowering induction, and flower organ specification.
PLOS ONE | 2014
Sandra Fonseca; Patricia Fernández-Calvo; Guillermo M. Fernández; Mónica Díez-Díaz; Selena Gimenez-Ibanez; Irene López-Vidriero; Marta Godoy; Gemma Fernández-Barbero; Jelle Van Leene; Geert De Jaeger; José Manuel Franco-Zorrilla; Roberto Solano
Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs). Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.