Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Manuel García-Fernández is active.

Publication


Featured researches published by José Manuel García-Fernández.


Microbiology and Molecular Biology Reviews | 2004

Streamlined Regulation and Gene Loss as Adaptive Mechanisms in Prochlorococcus for Optimized Nitrogen Utilization in Oligotrophic Environments

José Manuel García-Fernández; Nicole Tandeau de Marsac; Jesús Diez

SUMMARY Prochlorococcus is one of the dominant cyanobacteria and a key primary producer in oligotrophic intertropical oceans. Here we present an overview of the pathways of nitrogen assimilation in Prochlorococcus, which have been significantly modified in these microorganisms for adaptation to the natural limitations of their habitats, leading to the appearance of different ecotypes lacking key enzymes, such as nitrate reductase, nitrite reductase, or urease, and to the simplification of the metabolic regulation systems. The only nitrogen source utilizable by all studied isolates is ammonia, which is incorporated into glutamate by glutamine synthetase. However, this enzyme shows unusual regulatory features, although its structural and kinetic features are unchanged. Similarly, urease activities remain fairly constant under different conditions. The signal transduction protein PII is apparently not phosphorylated in Prochlorococcus, despite its conserved amino acid sequence. The genes amt1 and ntcA (coding for an ammonium transporter and a global nitrogen regulator, respectively) show noncorrelated expression in Prochlorococcus under nitrogen stress; furthermore, high rates of organic nitrogen uptake have been observed. All of these unusual features could provide a physiological basis for the predominance of Prochlorococcus over Synechococcus in oligotrophic oceans.


PLOS ONE | 2008

Glucose Uptake and Its Effect on Gene Expression in Prochlorococcus

Guadalupe Gómez-Baena; Antonio López-Lozano; Jorge Gil-Martínez; José Manuel Lucena; Jesús Diez; Pedro Candau; José Manuel García-Fernández

The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation) was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively) is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon cycle in nature. Besides, the ability of assimilating carbon molecules could provide additional hints to comprehend the ecological success of Prochlorococcus.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean

María del Carmen Muñoz-Marín; Ignacio Luque; Mikhail V. Zubkov; Polly G. Hill; Jesús Diez; José Manuel García-Fernández

Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5–2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose.


Applied and Environmental Microbiology | 2001

In Vivo Regulation of Glutamine Synthetase Activity in the Marine Chlorophyll b-Containing Cyanobacterium Prochlorococcus sp. Strain PCC 9511 (Oxyphotobacteria)†

Sabah El Alaoui; Jesús Diez; Lourdes Humanes; Fermín Toribio; Frédéric Partensky; José Manuel García-Fernández

ABSTRACT The physiological regulation of glutamine synthetase (GS; EC6.3.1.2 ) in the axenic Prochlorococcus sp. strain PCC 9511 was studied. GS activity and antigen concentration were measured using the transferase and biosynthetic assays and the electroimmunoassay, respectively. GS activity decreased when cells were subjected to nitrogen starvation or cultured with oxidized nitrogen sources, which proved to be nonusable forProchlorococcus growth. The GS activity in cultures subjected to long-term phosphorus starvation was lower than that in equivalent nitrogen-starved cultures. Azaserine, an inhibitor of glutamate synthase, provoked an increase in enzymatic activity, suggesting that glutamine is not involved in GS regulation. Darkness did not affect GS activity significantly, while the addition of diuron provoked GS inactivation. GS protein determination showed that azaserine induces an increase in the concentration of the enzyme. The unusual responses to darkness and nitrogen starvation could reflect adaptation mechanisms of Prochlorococcus for coping with a light- and nutrient-limited environment.


FEMS Microbiology Ecology | 2002

Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in non‐axenic cultures

Antonio López-Lozano; Jesús Diez; Sabah El Alaoui; Conrado Moreno-Vivián; José Manuel García-Fernández

Abstract The ability to assimilate nitrate in non-axenic isolates of Prochlorococcus spp. was addressed in this work, particularly in three low-irradiance adapted strains originating from ocean depths with measurable nitrate concentrations. None of the studied strains was able to use nitrate as the sole nitrogen source. Nitrate reductase (NR; EC 1.6.6.2) activity was, however, detected using the methyl viologen/dithionite assay in crude extracts from all studied Prochlorococcus strains. Characterization of this activity unambiguously demonstrated its enzymatic origin. We observed that NR activity did not decrease in vivo under darkness. Attempts to detect the narB gene (coding for NR in other cyanobacteria) by PCR with primers designed on the basis of the specific codon usage in Prochlorococcus were unsuccessful. However, when primers were designed considering the codon frequencies typical of other bacteria, we could amplify different fragments of nas genes, coding for bacterial assimilatory NRs. Similar amplification products were obtained using colonies of contaminant bacteria from Prochlorococcus cultures as PCR template. Furthermore, NR activity was found in cultures of these contaminants, demonstrating the non-cyanobacterial origin of the enzyme. These results strongly suggest that the studied strains of Prochlorococcus lack NR, in spite of inhabiting environments with nitrate as the main nitrogen source. In addition, they indicate that the nitrite produced by heterotrophic bacteria is not transferred to Prochlorococcus for growth, thus discarding a trophic nitrogen chain between heterotrophic bacteria and Prochlorococcus in the studied cultures.


Biochimica et Biophysica Acta | 2001

Regulation of glutamine synthetase by metal-catalyzed oxidative modification in the marine oxyphotobacterium Prochlorococcus

Guadalupe Gómez-Baena; Jesús Diez; José Manuel García-Fernández; Sabah El Alaoui; Lourdes Humanes

The inactivation of glutamine synthetase (GS; EC 6.3.1.2) by metal-catalyzed oxidation (MCO) systems was studied in several Prochlorococcus strains, including the axenic PCC 9511. GS was inactivated in the presence of various oxidative systems, either enzymatic (as NAD(P)H+NAD(P)H-oxidase+Fe(3+)+O(2)) or non-enzymatic (as ascorbate+Fe(3+)+O(2)). This process required the presence of oxygen and a metal cation, and is prevented under anaerobic conditions. Catalase and peroxidase, but not superoxide dismutase, effectively protected the enzyme against inactivation, suggesting that hydrogen peroxide mediates this mechanism, although it is not directly responsible for the reaction. Addition of azide (an inhibitor of both catalase and peroxidase) to the MCO systems enhanced the inactivation. Different thiols induced the inactivation of the enzyme, even in the absence of added metals. However, this inactivation could not be reverted by addition of strong oxidants, as hydrogen peroxide or oxidized glutathione. After studying the effect of addition of the physiological substrates and products of GS on the inactivation mechanism, we could detect a protective effect in the case of inorganic phosphate and glutamine. Immunochemical determinations showed that the concentration of GS protein significantly decreased by effect of the MCO systems, indicating that inactivation precedes the degradation of the enzyme.


Research in Microbiology | 2009

Stress responses in Prochlorococcus MIT9313 vs. SS120 involve differential expression of genes encoding proteases ClpP, FtsH and Lon.

Guadalupe Gómez-Baena; Oriol Alberto Rangel; Antonio López-Lozano; José Manuel García-Fernández; Jesús Diez

Prochlorococcus is a marine cyanobacterium responsible for a significant part of global primary production as well as being one of the most abundant organisms on Earth. Protein turnover is an essential and poorly understood aspect of the cyanobacterial response to environmental stresses. In the present work, cultures of the SS120 and MIT9313 strains were subjected to several conditions, and quantitative real time RT-PCR was used to measure changes in the expression of genes encoding three representative ATP-dependent proteases. We found common responses to conditions such as aging. However, the expression pattern under nutrient starvation was strikingly different in the two strains, probably reflecting the different regulatory backgrounds of the two ecotypes here studied.


Environmental Microbiology Reports | 2009

Physiological role and regulation of glutamate dehydrogenase in Prochlorococcus sp. strain MIT9313.

Oriol Alberto Rangel; Guadalupe Gómez-Baena; Antonio López-Lozano; Jesús Diez; José Manuel García-Fernández

Glutamate dehydrogenase is an enzyme catalysing a reaction for ammonium assimilation, alternative to those performed by glutamine synthetase and glutamate synthase. In the genus Prochlorococcus, genomic studies have shown the presence of the gdhA gene (encoding glutamate dehydrogenase) in only four of the sequenced strains, including MIT9313. We studied the physiological regulation of glutamate dehydrogenase in this strain, by measuring the expression of gdhA, the intracellular concentration of the enzyme and its activity. Our goal was to clarify the physiological role of glutamate dehydrogenase, in order to understand why it has been selectively conserved in certain strains. Studies performed in cultures under nitrogen starvation, or with inhibitors of the nitrogen assimilation, suggest that the main role of glutamate dehydrogenase is not the assimilation of ammonium. Glutamate dehydrogenase activity and gdhA expression increased along the growth of cultures. Besides, we found a significant upregulation in gene expression when cultures were grown on glutamate as nitrogen source. We suggest that the main physiological role of glutamate dehydrogenase in Prochlorococcus MIT9313 is the utilization of glutamate to produce ammonium and 2-oxoglutarate, and amino acid recycling, thus enabling to use amino acids as nitrogen source. Therefore we propose that glutamate dehydrogenase is present in the genome of strains for whom the utilization of amino acids is most important.


Planta | 1995

Effect of glutamine on glutamine-synthetase regulation in the green alga Monoraphidium braunii

José Manuel García-Fernández; Antonio López-Ruiz; José Alhama; José Roldán; Jesús Diez Dapena

Glutamine-synthetase (GS; EC 6.3.1.2) activity and protein levels were measured in crude extracts from Monoraphidium braunii Näegeli, strain 202-7d, cultures grown under different nitrogen sources. Only ammonium and l-glutamine promoted a partial enzyme inactivation, which, in the case of l-glutamine, was accompanied by a significant repression of GS. Methionine sulfoximine (MSX), a strong inhibitor of GS, produced a drastic inactivation of GS which was concomitant with a marked increase in GS protein as measured by rocket immunoelectrophoresis. Such an increase was prevented in the presence of cycloheximide. The effect of the l-glutamine analog on GS activity and protein was partially inhibited if l-glutamine was also added to cell cultures, possibly indicating competition in the transport of these two substances. In addition, the effects of MSX were reversed after longer times when cultures were treated with smaller concentrations of inhibitor. Treatment of cell cultures with azaserine, a specific inhibitor of glutamate synthase, the second enzyme acting in the ammonium assimilation pathway, promoted a strong GS inactivation and a partial repression of this enzyme, which paralleled a specific increase in the intracellular pools of glutamine High-performance liquid chromatography measurements of intracellular amino-acid concentrations showed that glutamine levels correlated negatively with GS concentration. A role for glutamine as a negative effector of GS synthesis is proposed.


PLOS ONE | 2014

Physiological Regulation of Isocitrate Dehydrogenase and the Role of 2-Oxoglutarate in Prochlorococcus sp. Strain PCC 9511

María Agustina Domínguez-Martín; Antonio López-Lozano; Jesús Diez; Guadalupe Gómez-Baena; Oriol A. Rangel-Zuñiga; José Manuel García-Fernández

The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

Collaboration


Dive into the José Manuel García-Fernández's collaboration.

Top Co-Authors

Avatar

Cándido J. Inglés

Universidad Miguel Hernández de Elche

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikhail V. Zubkov

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ignacio Luque

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Guadalupe Gómez-Baena

University of Córdoba (Spain)

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge