José Manuel Pérez-Fígares
University of Málaga
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Manuel Pérez-Fígares.
Microscopy Research and Technique | 2001
José Manuel Pérez-Fígares; Antonio J Jiménez; Esteban M. Rodríguez
Under normal physiological conditions the cerebrospinal fluid (CSF) is secreted continuously, although this secretion undergoes circadian variations. Mechanisms operating at the vascular side of the choroidal cells involve a sympathetic and a cholinergic innervation, with the former inhibiting and the latter stimulating CSF secretion. There are also regulatory mechanisms operating at the ventricular side of the choroidal cells, where receptors for monoamines such as dopamine, serotonin, and melatonin, and for neuropeptides such as vasopressin, atrial natriuretic hormone, and angiotensin II, have been identified. These compounds, that are normally present in the CSF, participate in the regulation of CSF secretion. Although the mechanisms responsible for the CSF circulation are not fully understood, several factors are known to play a role. There is evidence that the subcommissural organ (SCO)–Reissners fiber (RF) complex is one of the factors involved in the CSF circulation. In mammals, the predominant route of escape of CSF into blood is through the arachnoid villi. In lower vertebrates, the dilatation of the distal end of the central canal, known as terminal ventricle or ampulla caudalis, represents the main site of CSF escape into blood. Both the function and the ultrastructural arrangement of the ampulla caudalis suggest that it may be the ancestor structure of the mammalian arachnoid villi. RF‐glycoproteins reaching the ampulla caudalis might play a role in the formation and maintenance of the route communicating the CSF and blood compartments. The SCO‐RF complex may participate, under physiological conditions, in the circulation and reabsorption of CSF. Under pathological conditions, the SCO appears to be involved in the pathogeneses of congenital hydrocephalus. Changes in the SCO have been described in all species developing congenital hydrocephalus. In these reports, the important question whether the changes occurring in the SCO precede hydrocephalus, or are a consequence of the hydrocephalic state, has not been clarified. Recently, evidence has been obtained indicating that a primary defect of the SCO‐RF complex may lead to hydrocephalus. Thus, a primary and selective immunoneutralization of the SCO‐RF complex during the fetal and early postnatal life leads to absence of RF, aqueductal stenosis, increased CSF concentration of monoamines, and a moderate but sustained hydrocephalus. Microsc. Res. Tech. 52:591–607, 2001.
Journal of Neuropathology and Experimental Neurology | 2005
María Dolores Domínguez-Pinos; Patricia Páez; Antonio-Jesús Jiménez; Bernardo Weil; Miguel-Ángel Arráez; José Manuel Pérez-Fígares; E. M. Rodríguez
In mutant rodents, ependymal denudation occurs early in fetal life, preceding the onset of a communicating hydrocephalus, and is a key event in the etiology of this disease. The present investigation was designed to obtain evidence whether or not ependymal denudation occurs in 16- to 40-week-old human fetuses developing a communicating hydrocephalus (n = 8) as compared to fetuses of similar ages with no neuropathologic alterations (n = 15). Sections through the walls of the cerebral aqueduct and lateral ventricles were processed for lectin binding and immunocytochemistry using antibodies against ependyma, astroglia, neuroblasts, and macrophages markers. Anti-caveolin was used as a functional marker of the fetal ependyma. The structural and functional molecular markers are differentially expressed throughout the differentiation of the human fetal ependyma. Denudation of the ependyma of the aqueduct and lateral ventricles occurred in all fetuses developing a communicating hydrocephalus, including the youngest ones studied. The denuded surface area increased in parallel with the fetus age. The possibility is advanced that in many or most cases of human fetal hydrocephalus there is a common defect at the ependymal cell lineage leading to ependymal detachment. Evidence was obtained that in hydrocephalic human fetuses a process to repair the denuded areas takes place during the fetal life. In hydrocephalic fetuses, detachment of the ependyma of the lateral ventricles resulted in the (i) loss of the germinal ependymal zone, (ii) disorganization of the subventricular zone and, (iii) abnormal migration of neuroblasts into the ventricular cavity. Thus, detachment of the ependymal layer in hydrocephalic fetuses would not only be associated with the pathogenesis of hydrocephalus but also to abnormal neurogenesis.
Journal of Neuropathology and Experimental Neurology | 2007
Patricia Páez; Luis-Federico Bátiz; Ruth Roales-Buján; Luis-Manuel Rodríguez-Pérez; Sara Rodríguez; Antonio J Jiménez; Esteban M. Rodríguez; José Manuel Pérez-Fígares
Hyh mutant mice develop long-lasting hydrocephalus and represent a good model for investigating neuropathologic events associated with hydrocephalus. The study of their brains by use of lectin binding, bromodeoxyuridine labeling, immunochemistry, and scanning electron microscopy revealed that certain events related to hydrocephalus followed a well-defined pattern. A program of neuroepithelium/ependyma denudation was initiated at embryonic day 12 and terminated at the end of the second postnatal week. After the third postnatal week the denuded areas remained permanently devoid of ependyma. In contrast, a selective group of ependymal areas resisted denudation throughout the lifespan. Ependymal denudation triggered neighboring astrocytes to proliferate. These astrocytes expressed particular glial markers and formed a superficial cell layer replacing the lost ependyma. The loss of the neuroepithelium/ependyma layer at specific regions of the ventricular walls and at specific stages of brain development would explain the fact that only certain brain structures had abnormal development. Therefore, commissural axons forming the corpus callosum and the hippocampal commissure displayed abnormalities, whereas those forming the anterior and posterior commissures did not; and the brain cortex was not homogenously affected, with the cingular and frontal cortices being the most altered regions. All of these telencephalic alterations developed at stages when hydrocephalus was not yet patent at the lateral ventricles, indicating that abnormal neural development and hydrocephalus are linked at the etiologic level, rather than the former being a consequence of the latter. All evidence collected on hydrocephalic hyh mutant mice indicates that a primary alteration in the neuroepithelium/ependyma cell lineage triggers both hydrocephalus and abnormalities in telencephalic development.
Experimental Brain Research | 1999
Sara Rodríguez; Karin Vío; Carolina Wagner; Miguel Barría; Edison H. Navarrete; Victor D. Ramirez; José Manuel Pérez-Fígares; Esteban M. Rodríguez
Abstract The subcommissural organ (SCO) is a brain gland secreting glycoproteins into the cerebrospinal fluid (CSF), where they aggregate forming the Reissner’s fiber (RF). By the continuous addition of newly released glycoproteins, RF grows along the cerebral aqueduct, fourth ventricle, and central canal of the spinal cord. At the filum, RF-glycoproteins escape from the central canal and reach the local blood vessels. Despite a century of research, the function of the SCO remains elusive. The aim of the present investigation was to test the hypothesis that RF-glycoproteins, by binding and transporting monoamines out of the CSF, participate in the clearance of these compounds. A protocol was designed that led to the permanent immunoneutralization of the SCO through the maternal delivery of antibodies. This was achieved by transplacental transfer to the fetuses, and through the milk to the pups, of specific antibodies against SCO secretory proteins. The antibodies reached the CSF of the fetuses and pups and blocked the RF formation during the first months of life. Some of these animals died during the first postnatal weeks; those who survived displayed a rise in the CSF concentration of several monoamines, l-DOPA being the one with the highest rise. Adult rats transiently deprived of RF by a single injection of anti-RF antibodies into the CSF showed a transient rise in the CSF concentration of l-DOPA. All these results support the hypotheses that the SCO-RF complex participates in the clearance of monoamines from the CSF.
Journal of Neuropathology and Experimental Neurology | 2009
Antonio J Jiménez; José Manuel García-Verdugo; César González; Luis Federico Bátiz; Luis Manuel Rodríguez-Pérez; Patricia Páez; Mario Soriano-Navarro; Ruth Roales-Buján; Patricia Rivera; Sara Rodríguez; Esteban M. Rodríguez; José Manuel Pérez-Fígares
Neural stem cells persist after embryonic development in the subventricular zone (SVZ) niche and produce new neural cells during postnatal life; ependymal cells are a key component associated with this neurogenic niche. In the animal model of human hydrocephalus, the hyh mouse, the ependyma of the lateral ventricles is progressively lost during late embryonic and early postnatal life and disappears from most of the ventricular surface throughout its life span. To determine the potential consequences of this loss on the SVZ, we characterized the abnormalities in this neurogenic niche in hyh mice. There was overall disorganization and a marked reduction of proliferative cells in the SVZ of both newborn and adult hyh hydrocephalic mice in vivo; neuroblasts were displaced to the ventricular surface, and their migration through the rostral migratory stream was reduced. The numbers of resident neural progenitor cells in hyh mice were also markedly reduced, but they were capable of proliferating, forming neurospheres, and differentiating into neurons and glia in vitro in a manner indistinguishable from that of wild-type progenitor cells. These findings suggest that the reduction of proliferative activity observed in vivo is not caused by a cell autonomous defect of SVZ progenitors but is a consequence of a reduced number of these cells. Furthermore, the overall tissue disorganization of the SVZ and displacement of neuroblasts imply alterations in the neurogenic niche of postnatal hyh mice.
Journal of Neuropathology and Experimental Neurology | 2015
María M Guerra; Roberto Henzi; Alexander Ortloff; Nicole Lichtin; Karin Vío; Antonio J Jiménez; María Dolores Domínguez-Pinos; César González; María C Jara; Fernando Hinostroza; Sara Rodríguez; Maryoris Jara; Eduardo Ortega; Francisco Guerra; Deborah A. Sival; Wilfred F. A. den Dunnen; José Manuel Pérez-Fígares; James P. McAllister; Conrad E. Johanson; Esteban M. Rodríguez
Abstract Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenomena of fetal-onset hydrocephalus and abnormal neurogenesis. We used bromodeoxyuridine labeling, immunocytochemistry, electron microscopy, and cell culture to study the telencephalon of hydrocephalic HTx rats and correlated our findings with those in human hydrocephalic and nonhydrocephalic human fetal brains (n = 12 each). Our results suggest that abnormal expression of the intercellular junction proteins N-cadherin and connexin-43 in NSC leads to 1) disruption of the ventricular and subventricular zones, loss of NSCs and neural progenitor cells; and 2) abnormalities in neurogenesis such as periventricular heterotopias and abnormal neuroblast migration. In HTx rats, the disrupted NSC and progenitor cells are shed into the cerebrospinal fluid and can be grown into neurospheres that display intercellular junction abnormalities similar to those of NSC of the disrupted ventricular zone; nevertheless, they maintain their potential for differentiating into neurons and glia. These NSCs can be used to investigate cellular and molecular mechanisms underlying this condition, thereby opening the avenue for stem cell therapy.
Acta Neuropathologica | 2011
Luis Federico Bátiz; Antonio J Jiménez; Montserrat Guerra; Luis Manuel Rodríguez-Pérez; Cesar Toledo; Karin Vío; Patricia Páez; José Manuel Pérez-Fígares; Esteban M. Rodríguez
A heterogeneous population of ependymal cells lines the brain ventricles. The evidence about the origin and birth dates of these cell populations is scarce. Furthermore, the possibility that mature ependymal cells are born (ependymogenesis) or self-renewed (ependymal proliferation) postnatally is controversial. The present study was designed to investigate both phenomena in wild-type (wt) and hydrocephalic α-SNAP mutant (hyh) mice at different postnatal stages. In wt mice, proliferating cells in the ventricular zone (VZ) were only found in two distinct regions: the dorsal walls of the third ventricle and Sylvian aqueduct (SA). Most proliferating cells were monociliated and nestin+, likely corresponding to radial glial cells. Postnatal cumulative BrdU-labeling showed that most daughter cells remained in the VZ of both regions and they lost nestin-immunoreactivity. Furthermore, some labeled cells became multiciliated and GLUT-1+, indicating they were ependymal cells born postnatally. Postnatal pulse BrdU-labeling and Ki-67 immunostaining further demonstrated the presence of cycling multiciliated ependymal cells. In hydrocephalic mutants, the dorsal walls of the third ventricle and SA expanded enormously and showed neither ependymal disruption nor ventriculostomies. This phenomenon was sustained by an increased ependymogenesis. Consequently, in addition to the physical and geometrical mechanisms traditionally explaining ventricular enlargement in fetal-onset hydrocephalus, we propose that postnatal ependymogenesis could also play a role. Furthermore, as generation of new ependymal cells during postnatal stages was observed in distinct regions of the ventricular walls, such as the roof of the third ventricle, it may be a key mechanism involved in the development of human type 1 interhemispheric cysts.
Microscopy Research and Technique | 2001
Antonio J Jiménez; P. Fernández-Llebrez; José Manuel Pérez-Fígares
The neural control of the subcommissural organ (SCO) has been partially characterized. The best known input is an important serotonergic innervation in the SCO of several mammals. In the rat, this innervation comes from raphe nuclei and appears to exert an inhibitory effect on the SCO activity. A GABAergic innervation has also been shown in the SCO of the rat and frog Rana perezi. In the rat, GABA and the enzyme glutamate decarboxylase are involved in the SCO innervation. GABA is taken up by some secretory ependymocytes and nerve terminals, coexisting with serotonin in a population of synaptic terminals. Dopamine, noradrenaline, and different neuropeptides such as LH‐RH, vasopressin, vasotocin, oxytocin, mesotocin, substance P, α‐neoendorphin, and galanin are also involved in SCO innervation. In the bovine SCO, an important number of fibers containing tyrosine hydroxylase are present, indicating that in this species dopamine and/or noradrenaline‐containing fibers are an important neural input. In Rana perezi, a GABAergic innervation of pineal origin could explain the influence of light on the SCO secretory activity in frogs. A general conclusion is that the SCO cells receive neural inputs from different neurotransmitter systems. In addition, the possibility that neurotransmitters and neuropeptides present in the cerebrospinal fluid may also affect the SCO activity, is discussed. Microsc. Res. Tech. 52:520–533, 2001.
Cell and Tissue Research | 2004
Mercedes Tomé; Antonio J Jiménez; Hans G. Richter; Karin Vío; F. Javier Bermúdez-Silva; Esteban M. Rodríguez; José Manuel Pérez-Fígares
Abstract Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissner’s fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.
Molecular and Cellular Probes | 2009
Luis Federico Bátiz; Ruth Roales-Buján; Luis Manuel Rodríguez-Pérez; Isabel M. Matas; Patricia Páez; María Rodríguez Roque; Antonio J Jiménez; Cayo Ramos; José Manuel Pérez-Fígares
alpha-SNAP is an essential component of the protein machinery responsible for membrane fusion events in different cell types. The hyh (hydrocephalus with hop gait) mouse carries a missense mutation in Napa gene that results in a point mutation (M105I) in alpha-SNAP protein. Homozygous animals for the mutant allele have been identified by the clinical and/or neuropathological phenotype, or by direct sequencing of PCR products. The aims of the present study were (i) to develop a high-throughput technique to genotype hyh mice, (ii) to correlate genotype-phenotype, and (iii) to analyze the earliest pathological changes of hyh mutant mice. As no restriction sites are affected by the hyh mutation, we resolved this problem by creating a BspHI restriction site with a modified (mismatch) polymerase chain reaction (PCR) primer in wild-type allele. This artificially created restriction site (ACRS)-PCR technique is a simple, rapid and reliable method to genotype hyh mice in a day-work procedure. Biochemical and histological analysis of genotyped hyh embryos at different developmental stages allowed us to identify and characterize the earliest brain pathological changes of the hyh phenotype, including the first signs of neuroepithelial disruption and neuronal ectopia. In addition, genotype-phenotype analysis of 327 animals confirmed that (i) hyh is a single-gene autosomal recessive disorder, and (ii) the disorder has 100% penetrance (i.e., the mutation was only present in affected mice). The genotyping method described here enhances the potentiality of hyh mouse as a unique in vivo model to study the role of membrane trafficking in different developmental and physiological processes.