Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Pacheco is active.

Publication


Featured researches published by José Pacheco.


Journal of Volcanology and Geothermal Research | 1999

Volcanic geology of Furnas Volcano, São Miguel, Azores

John E. Guest; J. L. Gaspar; P. D. Cole; G. Queiroz; Angus M. Duncan; Nicolau Wallenstein; Teresa Ferreira; José Pacheco

Abstract Furnas is the easternmost of the three active central volcanoes on the island of Sao Miguel in the Azores. Unlike the other two central volcanoes, Sete Cidades and Fogo, Furnas does not have a well-developed edifice, but consists of a steep-sided caldera complex 8×5 km across. It is built on the outer flanks of the Povoacao/Nordeste lava complex that forms the eastern end of Sao Miguel. Constructive flanks to the volcano exist on the southern side where they form the coastal cliffs, and to the west. The caldera margins tend to reflect the regional/local tectonic pattern which has also controlled the distribution of vents within the caldera and areas of thermal springs. Activity at Furnas has been essentially explosive, erupting materials of trachytic composition. Products associated with the volcano include plinian and sub-plinian pumice deposits, ignimbrites and surge deposits, phreatomagmatic ashes, block and ash deposits and dome materials. Most of the activity has occurred from vents within the caldera, or on the caldera margin, although strombolian eruptions with aa flows of ankaramite and hawaiite have occurred outside the caldera. The eruptive history consists of at least two major caldera collapses, followed by caldera infilling. Based on 14 C dates, it appears that the youngest major collapse occurred about 12,000–10,000 years BP. New 14 C dates for a densely welded ignimbrite suggest that a potential caldera-forming eruption occurred at about 30,000 years BP. Recent eruptions (


Geological Magazine | 2013

Volcanism from fissure zones and the Caldeira central volcano of Faial Island, Azores archipelago: geochemical processes in multiple feeding systems

Vittorio Zanon; Ulrich Kueppers; José Pacheco; Inês Cruz

Magmas in Faial Island, Azores (Portugal), were mostly erupted from two fissure zones and the Caldeira central volcano during overlapping periods. The fissure zones follow extensional trends oriented WNW and ESE and erupted nepheline- to hypersthene-normative basalts and hawaiites. The Caldeira central volcano builds the central part of the island, which is cut by the fissure zones. Ne-normative basalts show similar high-field-strength element (HFSE) concentrations but higher large ion lithophile element (LILE) concentrations than hy-normative equivalents. Primitive melts were generated by small (3–5%) degrees of partial melting of garnet-bearing peridotite, variably enriched in incompatible elements. Overall, basalts from Faial show relatively higher LILE abundances and LILE/HFSE ratios than those of the other islands of the Azores and of many other volcanoes in the Atlantic area. This feature indicates the existence of chemical heterogeneities in the mantle sources characterized by variable degrees of metasomatism, both at local and regional scales. Hawaiites evolved from basalts through 30–40% fractional crystallization of mafic phases plus some plagioclase, in deep reservoirs, at about 430–425 MPa (~ 15 km). The Caldeira central volcano rocks range from basalts to trachytes. Basalts, produced under similar conditions as fissure basalts, evolved to trachytes through large degrees of polybaric fractional crystallization (100–760 MPa; i.e. ~ 3.6–26 km), involving olivine, clinopyroxene, feldspar and minor quantities of amphibole, biotite, apatite and oxides. In contrast, mafic magmas from the fissure zones were erupted directly onto the surface from magma reservoirs mainly located at the crust–mantle boundary.


Geological Society of America Bulletin | 2014

Constraining chronology and time-space evolution of Holocene volcanic activity on the Capelo Peninsula (Faial Island, Azores): The paleomagnetic contribution

Anita Di Chiara; Fabio Speranza; Massimiliano Porreca; Adriano Pimentel; Francesca D’Ajello Caracciolo; José Pacheco

Faial is one of the most volcanically active islands of the Azores Archipelago. Historical eruptions occurred on the Capelo Peninsula (westernmost sector of the island) during A.D. 1672–1673 and more recently in A.D. 1957–1958. The other exposed volcanic products of the peninsula are so far loosely dated within the Holocene. Here, we present a successful attempt to correlate scoria cones and lava flows yielded by the same eruption on the Capelo Peninsula using paleomagnetic data from 31 sites (10 basaltic scoriae, 21 basaltic lava flows). In the investigated products, we recognize at least six prehistoric clusters of volcanic activity, whereas 11 lava sites are correlated with four scoria cones. Dating was conducted by comparing our paleomagnetic directions with relocated Holocene reference curves of the paleosecular variation of the geomagnetic field from France and the UK. We find that the studied volcanic rocks exposed on the Capelo Peninsula are younger than previously believed, being entirely formed in the last 8 k.y., and that the activity intensified over the last 3 k.y. Our study confirms that paleomagnetism is a powerful tool for unraveling the chronology and characteristics of Holocene activity at volcanoes where geochronological age constraints are still lacking.


Journal of Volcanology and Geothermal Research | 1999

The Povoação Ignimbrite, Furnas Volcano, São Miguel, Azores

Angus M. Duncan; G. Queiroz; John E. Guest; P. D. Cole; Nicolau Wallenstein; José Pacheco

Abstract The Povoacao Ignimbrite Formation (PIF) was emplaced by one of the larger explosive trachytic eruptions of Furnas Volcano, Sao Miguel, Azores. Trachytic ignimbrites are common in the products of Furnas Volcano and examples of welding occur in at least three ignimbrites of which the Povoacao Ignimbrite is the most extensive. The PIF may correlate with the formation of the main caldera of Furnas. In the Povoacao Ignimbrite, the welded horizons thicken, without evidence of rheomorphism, into palaeovalleys and can be seen to thin and in some places become completely attenuated over old ridges. The welded horizons are intimately associated with non-welded ignimbrites and in some places there is an alternation between welded and non-welded horizons. On interfluves, the ignimbrite is stratified and some of the welded horizons show pinch and swell and occasional cross-bedding. The welding is interpreted as a primary depositional feature with the clasts sintering on emplacement. It is argued that this ignimbrite was emplaced from a turbulent pulsatory pyroclastic flow. Some pulses were hotter which enabled more extensive development of welding. The flows became more concentrated and denser down valleys favouring the emplacement of thicker welded units.


Geological Society, London, Special Publications | 2016

Conclusion: recommendations and findings of the RED SEED working group

Andrew J. L. Harris; Simon A. Carn; J. Dehn; C. Del Negro; M. T. Guđmundsson; B. Cordonnier; Talfan Barnie; E. Chahi; S. Calvari; T. Catry; T. De Groeve; D. Coppola; Ashley Gerard Davies; M. Favalli; Fabrizio Ferrucci; E. Fujita; G. Ganci; Fanny Garel; P. Huet; James P. Kauahikaua; Karim Kelfoun; V. Lombardo; G. Macedonio; José Pacheco; Matthew R. Patrick; Nicola Pergola; Michael S. Ramsey; Rocco Rongo; F. Sahy; K. Smith

Abstract RED SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modelling and response communities with experience in tracking volcanic effusive events. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. During each day, presentations were given reviewing the state of the art in terms of (a) volcano hot spot detection and parameterization, (b) operational satellite-based hot spot detection systems, (c) lava flow modelling and (d) response protocols during effusive crises. At the end of each presentation set, the four groups retreated to discuss and report on requirements for a truly integrated and operational response that satisfactorily combines remote sensors, modellers and responders during an effusive crisis. The results of collating the final reports, and follow-up discussions that have been on-going since the workshop, are given here. We can reduce our discussions to four main findings. (1) Hot spot detection tools are operational and capable of providing effusive eruption onset notice within 15 min. (2) Spectral radiance metrics can also be provided with high degrees of confidence. However, if we are to achieve a truly global system, more local receiving stations need to be installed with hot spot detection and data processing modules running on-site and in real time. (3) Models are operational, but need real-time input of reliable time-averaged discharge rate data and regular updates of digital elevation models if they are to be effective; the latter can be provided by the radar/photogrammetry community. (4) Information needs to be provided in an agreed and standard format following an ensemble approach and using models that have been validated and recognized as trustworthy by the responding authorities. All of this requires a sophisticated and centralized data collection, distribution and reporting hub that is based on a philosophy of joint ownership and mutual trust. While the next chapter carries out an exercise to explore the viability of the last point, the detailed recommendations behind these findings are detailed here.


Geological Society, London, Memoirs | 2015

Chapter 9 The volcanic history of Furnas Volcano, São Miguel, Azores

John E. Guest; José Pacheco; P. D. Cole; Angus M. Duncan; Nicolau Wallenstein; G. Queiroz; J. L. Gaspar; Teresa Ferreira

Abstract Furnas is the easternmost of the trachytic active central volcanoes of São Miguel. Unlike the other central volcanoes, Sete Cidades and Fogo, Furnas does not have a substantial edifice built up above sea-level. Although not as dominant as the other two volcanoes, Furnas does, however, have an edifice rising from the basal basaltic lavas exposed on the north coast to around 600 m asl on the northern rim of the main caldera. In common with Sete Cidades and Fogo, Furnas had major trachytic explosive eruptions in its volcanic history that emplaced welded ignimbrites. In the last 5 ka Furnas has had 10 moderately explosive trachytic eruptions of sub-Plinian character; two of these have taken place since the island was settled in the mid-fifteenth century. A future eruption of sub-Plinian magnitude is a major hazard posed by Furnas Volcano. Even when not in eruption, Furnas is a hazardous environment. Its fumarolic fields discharge high levels of CO2 and concentrations in some area of Furnas village present a risk to health; the steep slopes and poorly consolidated volcanic materials are prone to landslides, in particular when triggered by earthquakes or following heavy rain, as was the case in 1997, when landslides caused severe damage and casualties in Ribeira Quente.


Geological Society, London, Memoirs | 2015

Chapter 12 Eruptive frequency and volcanic hazards zonation in São Miguel Island, Azores

J. L. Gaspar; John E. Guest; G. Queiroz; José Pacheco; A. Pimentel; A. Gomes; R. Marques; A. Felpeto; Teresa Ferreira; Nicolau Wallenstein

Abstract São Miguel Island comprises five active volcanic systems, including three central volcanoes with calderas and two basaltic fissure systems. Volcanic eruptions in São Miguel are of basaltic and trachytic nature (s.l.), including Hawaiian, Strombolian, sub-Plinian, Plinian and Vulcanian events, the more explosive ones frequently including hydromagmatic phases. Large Plinian eruptions are related to caldera-forming events that occurred in the past. With reference to the Fogo A stratigraphic marker, a total of 73 individual volcanic eruptions have been identified in the last 5 ka, giving a recurrence interval of 68.5 years. Taking into account that only six events have occurred in historical times, the recurrence interval increases to 95 years and, clearly, a future event is overdue because the most recent eruption occurred in 1652. It should be noted, however, that some volcanic eruptions in the past have occurred in clusters. The eruptive frequencies of the last 5 ka of activity have been determined for all types of eruptions and related hazards, including lava flows, pyroclastic falls, pyroclastic density currents (PDCs) and lahars. The areas susceptible to volcanic products have been mapped and modelled under different eruptive conditions.


Journal of Petrology | 2017

Petrogenesis of the peralkaline ignimbrites of Terceira, Azores

Adam John Jeffery; Ralf Gertisser; Stephen Self; Adriano Pimental; Brian O'Driscoll; José Pacheco

The recent (< 100 ka) volcanic stratigraphy of Terceira, Azores, includes at least seven peralkaline trachytic ignimbrite formations, attesting to a history of explosive eruptions. In this study, the petrogenesis and pre-eruptive storage conditions of the ignimbrite-forming magmas are investigated via whole-rock major and trace element geochemistry, melt inclusion and groundmass glass major element and volatile compositions, mineral chemistry, thermobarometric models, and petrogenetic modelling. Our primary aims are to develop a model for the magmatic plumbing system from which the ignimbrite-forming trachytes of Terceira were produced by evaluating various petrogenetic processes and constraining pre-eruptive magma storage conditions. We also place the ignimbriteforming magmas into the context of the Terceira suite and discuss the potential implications of preeruptive magma conditions for eruptive behaviour. Results indicate that ignimbrite-forming, comenditic trachytes are generated predominantly by extended fractional crystallization of basaltic parental magmas at redox conditions around 1 log unit below the fayalite–magnetite–quartz buffer. This is achieved via a polybaric fractionation pathway, in which mantle-derived basalts stall and fractionate to hawaiitic compositions at lower crustal depths ( 15 km), before ascending to a shallow crustal magma storage zone ( 2–4 km) and fractionating towards comenditic trachytic compositions. The most evolved pantelleritic magmas of Terceira (not represented by the ignimbrites) are plausibly generated by continued fractionation from the comenditic trachytes. Syenite autoliths represent portions of peralkaline trachytic melt that crystallized in situ at the margins of a silicic reservoir. Trachytic enclaves hosted within syenitic autoliths provide direct evidence for a two-stage mingling process, in which ascending hawaiites are mixed with trachytic magmas in the shallow crustal magma storage zone. The resulting hybridized trachytes then ascend further and mix with the more evolved peralkaline trachytes in the uppermost eruptible cap of the system, passing first through a syenitic crystal mush. The reduced viscosities of the peralkaline silicic magmas of this study in comparison with their metaluminous counterparts facilitate rapid crystal–melt segregation via crystal settling, generating compositionally zoned magma bodies and, in some instances, relatively crystalpoor erupted magmas. Reduced viscosity may also inhibit highly explosive activity (e.g. formation of a sustained eruption column), and limit the majority of explosive eruptions to low pyroclastic fountaining or ‘boil-over’ eruption styles. The formation of intermediate composition magmas within the system is considered to be limited to episodic mixing between mafic and silicic magmas.


Bulletin of Volcanology | 2017

Translations of volcanological terms: cross-cultural standards for teaching, communication, and reporting

Andrew J. L. Harris; Alexander Belousov; Sonia Calvari; Hugo Delgado-Granados; Matthias Hort; Kenneth T. Koga; Estuning Tyas Wulan Mei; Agung Harijoko; José Pacheco; Jean-Marie Prival; Carmen Solana; Þorvaldur Þórðarson; Jean-Claude Thouret; Benjamin van Wyk de Vries

When teaching at a non-English language university, we often argue that because English is the international language, students need to become familiar with English terms, even if the bulk of the class is in the native language. However, to make the meaning of the terms clear, a translation into the native language is always useful. Correct translation of terminology is even more crucial for emergency managers and decision makers who can be confronted with a confusing and inconsistently applied mix of terminology. Thus, it is imperative to have a translation that appropriately converts the meaning of a term, while being grammatically and lexicologically correct, before the need for use. If terms are not consistently defined across all languages following industry standards and norms, what one person believes to be a dog, to another is a cat. However, definitions and translations of English scientific and technical terms are not always available, and language is constantly evolving. We live and work in an international world where English is the common language of multi-cultural exchange. As a result, while finding the correct translation can be difficult because we are too used to the English language terms, translated equivalents that are available may not have been through the peer review process. We have explored this issue by discussing grammatically and lexicologically correct French, German, Icelandic, Indonesian, Italian, Portuguese, Russian, Spanish, and Japanese versions for terms involved in communicating effusive eruption intensity.


Bulletin of Volcanology | 2001

Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption

P. D. Cole; John E. Guest; Angus M. Duncan; José Pacheco

Collaboration


Dive into the José Pacheco's collaboration.

Top Co-Authors

Avatar

G. Queiroz

University of the Azores

View shared research outputs
Top Co-Authors

Avatar

J. L. Gaspar

University of the Azores

View shared research outputs
Top Co-Authors

Avatar

John E. Guest

University College London

View shared research outputs
Top Co-Authors

Avatar

P. D. Cole

Plymouth State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vittorio Zanon

University of the Azores

View shared research outputs
Researchain Logo
Decentralizing Knowledge