Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Renato Rosa Cussiol is active.

Publication


Featured researches published by José Renato Rosa Cussiol.


Journal of Biological Chemistry | 2003

Organic Hydroperoxide Resistance Gene Encodes a Thiol-dependent Peroxidase*

José Renato Rosa Cussiol; Simone Vidigal Alves; Marco Antônio Condé de Oliveira; Luis Eduardo Soares Netto

ohr (organic hydroperoxide resistance gene) is present in several species of bacteria, and its deletion renders cells specifically sensitive to organic peroxides. The goal of this work was to determine the biochemical function of Ohr fromXylella fastidiosa. All of the Ohr homologues possess two cysteine residues, one of them located in a VCP motif, which is also present in all of the proteins from the peroxiredoxin family. Therefore, we have investigated whether Ohr possesses thiol-dependent peroxidase activity. The ohrgene from X. fastidiosa was expressed in Escherichia coli, and the recombinant Ohr decomposed hydroperoxides in a dithiothreitol-dependent manner. Ohr was about twenty times more efficient to remove organic hydroperoxides than to remove H2O2. This result is consistent with the organic hydroperoxide sensitivity of Δohr strains. The dependence of Ohr on thiol compounds was ascertained by glutamine synthetase protection assays. Approximately two thiol equivalents were consumed per peroxide removed indicating that Ohr catalyzes the following reaction: 2RSH + ROOH → RSSR + ROH + H2O. Pretreatment of Ohr with N-ethyl maleimide and substitution of cysteine residues by serines inhibited this peroxidase activity indicating that both of the Ohr cysteines are important to the decomposition of peroxides. C125S still had a residual enzymatic activity indicating that Cys-61 is directly involved in peroxide removal. Monothiol compounds do not support the peroxidase activity of Ohr as well as thioredoxin from Saccharomyces cerevisiaeand from Spirulina. Interestingly, dithiothreitol and dyhydrolipoic acid, which possess two sulfhydryl groups, do support the peroxidase activity of Ohr. Taken together our results unequivocally demonstrated that Ohr is a thiol-dependent peroxidase.


Journal of Molecular Biology | 2009

Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae.

Karen Fulan Discola; Marcos Antonio de Oliveira; José Renato Rosa Cussiol; Gisele Monteiro; José Antonio Bárcena; Pablo Porras; C. Alicia Padilla; Beatriz G. Guimarães; Luis Eduardo Soares Netto

Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower K(M) for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGrx2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 A, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity.


Journal of Biological Chemistry | 2010

Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity: Lipoyl-dependent peroxidase

José Renato Rosa Cussiol; Thiago Geronimo Pires Alegria; Luke I. Szweda; Luis Eduardo Soares Netto

The Ohr (organic hydroperoxide resistance) family of 15-kDa Cys-based, thiol-dependent peroxidases is central to the bacterial response to stress induced by organic hydroperoxides but not by hydrogen peroxide. Ohr has a unique three-dimensional structure and requires dithiols, but not monothiols, to support its activity. However, the physiological reducing system of Ohr has not yet been identified. Here we show that lipoylated enzymes present in the bacterial extracts of Xylella fastidiosa interacted physically and functionally with this Cys-based peroxidase, whereas thioredoxin and glutathione systems failed to support Ohr peroxidase activity. Furthermore, we could reconstitute in vitro three lipoyl-dependent systems as the Ohr physiological reducing systems. We also showed that OsmC from Escherichia coli, an orthologue of Ohr from Xylella fastidiosa, is specifically reduced by lipoyl-dependent systems. These results represent the first description of a Cys-based peroxidase that is directly reduced by lipoylated enzymes.


Journal of Biological Chemistry | 2010

Structural and Biochemical Characterization of Peroxiredoxin Qβ from Xylella fastidiosa CATALYTIC MECHANISM AND HIGH REACTIVITY

Bruno Brasil Horta; Marcos A. Oliveira; Karen Fulan Discola; José Renato Rosa Cussiol; Luis Eduardo Soares Netto

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 m−1 s−1, respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie ∼12.3 Å apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of α-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 10(7) and 10(6) M(-1) S(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie approximately 12.3 A apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite

Thiago Geronimo Pires Alegria; Diogo de Abreu Meireles; José Renato Rosa Cussiol; Martín Hugo; Madia Trujillo; Marcos Antonio de Oliveira; Sayuri Miyamoto; Raphael F. Queiroz; Napoleão Fonseca Valadares; Richard C. Garratt; Rafael Radi; Paolo Di Mascio; Ohara Augusto; Luis Eduardo Soares Netto

Significance Hydroperoxides play central roles in cell signaling. Hydroperoxides of arachidonic acid are mediators of inflammatory processes in mammals, whereas hydroperoxides of linoleic acid play equivalent roles in plants. Peroxynitrite is also involved in host–pathogen interactions, and hydroperoxide levels must therefore be strictly controlled by host-derived thiol-dependent peroxidases. Organic hydroperoxide resistance (Ohr) enzymes, which are present in many bacteria, display unique biochemical properties, reducing fatty acid hydroperoxides and peroxynitrite with extraordinary efficiency. Furthermore, Ohr (but not other thiol-dependent peroxidases) is involved in the Pseudomonas aeruginosa response to fatty acid hydroperoxides and to peroxynitrite, although the latter is more complex, probably depending on other enzymes. Therefore, Ohr plays central roles in the bacterial response to two hydroperoxides that are at the host–pathogen interface. Organic hydroperoxide resistance (Ohr) enzymes are unique Cys-based, lipoyl-dependent peroxidases. Here, we investigated the involvement of Ohr in bacterial responses toward distinct hydroperoxides. In silico results indicated that fatty acid (but not cholesterol) hydroperoxides docked well into the active site of Ohr from Xylella fastidiosa and were efficiently reduced by the recombinant enzyme as assessed by a lipoamide-lipoamide dehydrogenase–coupled assay. Indeed, the rate constants between Ohr and several fatty acid hydroperoxides were in the 107–108 M−1⋅s−1 range as determined by a competition assay developed here. Reduction of peroxynitrite by Ohr was also determined to be in the order of 107 M−1⋅s−1 at pH 7.4 through two independent competition assays. A similar trend was observed when studying the sensitivities of a ∆ohr mutant of Pseudomonas aeruginosa toward different hydroperoxides. Fatty acid hydroperoxides, which are readily solubilized by bacterial surfactants, killed the ∆ohr strain most efficiently. In contrast, both wild-type and mutant strains deficient for peroxiredoxins and glutathione peroxidases were equally sensitive to fatty acid hydroperoxides. Ohr also appeared to play a central role in the peroxynitrite response, because the ∆ohr mutant was more sensitive than wild type to 3-morpholinosydnonimine hydrochloride (SIN-1 , a peroxynitrite generator). In the case of H2O2 insult, cells treated with 3-amino-1,2,4-triazole (a catalase inhibitor) were the most sensitive. Furthermore, fatty acid hydroperoxide and SIN-1 both induced Ohr expression in the wild-type strain. In conclusion, Ohr plays a central role in modulating the levels of fatty acid hydroperoxides and peroxynitrite, both of which are involved in host–pathogen interactions.


PLOS ONE | 2015

Oligomerization of Cu,Zn-Superoxide Dismutase (SOD1) by Docosahexaenoic Acid and Its Hydroperoxides In Vitro: Aggregation Dependence on Fatty Acid Unsaturation and Thiols

Patricia Postilione Appolinário; Danilo B. Medinas; Adriano B. Chaves-Filho; Thiago C. Genaro-Mattos; José Renato Rosa Cussiol; Luis Eduardo Soares Netto; Ohara Augusto; Sayuri Miyamoto

Docosahexaenoic acid (C22:6, n-3, DHA) is a polyunsaturated fatty acid highly enriched in the brain. This fatty acid can be easily oxidized yielding hydroperoxides as primary products. Cu, Zn-Superoxide dismutase (SOD1) aggregation is a common hallmark of Amyotrophic Lateral Sclerosis (ALS) and the molecular mechanisms behind their formation are not completely understood. Here we investigated the effect of DHA and its hydroperoxides (DHAOOH) on human SOD1 oligomerization in vitro. DHA induced the formation of high-molecular-weight (HMW) SOD1 species (>700 kDa). Aggregation was dependent on free thiols and occurred primarily with the protein in its apo-form. SOD1 incubation with DHA was accompanied by changes in protein structure leading to exposure of protein hydrophobic patches and formation of non-amyloid aggregates. Site-directed mutagenesis studies demonstrated that Cys 6 and Cys 111 in wild-type and Cys 6 in ALS-linked G93A mutant are required for aggregation. In contrast, DHAOOH did not induce HMW species formation but promoted abnormal covalent dimerization of apo-SOD1 that was resistant to SDS and thiol reductants. Overall, our data demonstrate that DHA and DHAOOH induce distinct types of apo-SOD1 oligomerization leading to the formation of HMW and low-molecular-weight species, respectively.


Acta Crystallographica Section D-biological Crystallography | 2004

Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa.

Marcos Antonio de Oliveira; Luis Eduardo Soares Netto; Francisco J. Medrano; João Alexandre Ribeiro Gonçalves Barbosa; Simone Vidigal Alves; José Renato Rosa Cussiol; Beatriz G. Guimarães

Xylella fastidiosa organic hydroperoxide-resistance protein (Ohr) is a dithiol-dependent peroxidase that is widely conserved in several pathogenic bacteria with high affinity for organic hydroperoxides. The protein was crystallized using the hanging-drop vapour-diffusion method in the presence of PEG 4000 as precipitant after treatment with organic peroxide (t-butyl hydroperoxide). X-ray diffraction data were collected to a maximum resolution of 1.8 A using a synchrotron-radiation source. The crystal belongs to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 87.66, c = 160.28 A. The crystal structure was solved by molecular-replacement methods. The enzyme has a homodimeric quaternary structure similar to that observed for its homologue from Pseudomonas aeruginosa, but differs from the previous structure as the active-site residue Cys61 is oxidized. Structure refinement is in progress.


PLOS ONE | 2018

Structural insights on the efficient catalysis of hydroperoxide reduction by Ohr: Crystallographic and molecular dynamics approaches

Erika Piccirillo; Thiago Geronimo Pires Alegria; Karen Fulan Discola; José Renato Rosa Cussiol; Renato Mateus Domingos; Marcos A. Oliveira; Leandro Fórnias Machado de Rezende; Luis Eduardo Soares Netto; Antonia T. do Amaral

Organic hydroperoxide resistance (Ohr) enzymes are highly efficient Cys-based peroxidases that play central roles in bacterial response to fatty acid hydroperoxides and peroxynitrite, two oxidants that are generated during host-pathogen interactions. In the active site of Ohr proteins, the conserved Arg (Arg19 in Ohr from Xylella fastidiosa) and Glu (Glu51 in Ohr from Xylella fastidiosa) residues, among other factors, are involved in the extremely high reactivity of the peroxidatic Cys (Cp) toward hydroperoxides. In the closed state, the thiolate of Cp is in close proximity to the guanidinium group of Arg19. Ohr enzymes can also assume an open state, where the loop containing the catalytic Arg is far away from Cp and Glu51. Here, we aimed to gain insights into the putative structural switches of the Ohr catalytic cycle. First, we describe the crystal structure of Ohr from Xylella fastidiosa (XfOhr) in the open state that, together with the previously described XfOhr structure in the closed state, may represent two snapshots along the coordinate of the enzyme-catalyzed reaction. These two structures were used for the experimental validation of molecular dynamics (MD) simulations. MD simulations employing distinct protonation states and in silico mutagenesis indicated that the polar interactions of Arg19 with Glu51 and Cp contributed to the stabilization of XfOhr in the closed state. Indeed, Cp oxidation to the disulfide state facilitated the switching of the Arg19 loop from the closed to the open state. In addition to the Arg19 loop, other portions of XfOhr displayed high mobility, such as a loop rich in Gly residues. In summary, we obtained a high correlation between crystallographic data, MD simulations and biochemical/enzymatic assays. The dynamics of the Ohr enzymes are unique among the Cys-based peroxidases, in which the active site Arg undergoes structural switches throughout the catalytic cycle, while Cp remains relatively static.


Protein Expression and Purification | 2015

Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach

L.S. Lemke; Rosa M. Chura-Chambi; Daniella Rodrigues; José Renato Rosa Cussiol; N.V. Malavasi; Thiago Geronimo Pires Alegria; Luis Eduardo Soares Netto; Ligia Morganti

The lack of efficient refolding methodologies must be overcome to take full advantage of the fact that bacteria express high levels of aggregated recombinant proteins. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, dissociating aggregates, which makes HHP a useful tool to solubilize proteins for subsequent refolding. A process of refolding was set up by using as a model TsnC, a thioredoxin that catalyzes the disulfide reduction to a dithiol, a useful indication of biological activity. The inclusion bodies (IB) were dissociated at 2.4 kbar. The effect of incubation of IB suspensions at 1-800 bar, the guanidine hydrochloride concentration, the oxidized/reduced glutathione (GSH/GSSG) ratios, and the additives in the refolding buffer were analyzed. To assess the yields of fully biologically active protein obtained for each tested condition, it was crucial to analyze both the TsnC solubilization yield and its enzymatic activity. Application of 2.4 kbar to the IB suspension in the presence of 9 mM GSH, 1mM GSSG, 0.75 M guanidine hydrochloride, and 0.5M arginine with subsequent incubation at 1 bar furnished high refolding yield (81%). The experience gained in this study shall help to establish efficient HHP-based protein refolding processes for other proteins.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2007

Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signaling and more ☆

Luis Eduardo Soares Netto; Marcos Antonio de Oliveira; Gisele Monteiro; Ana Paula Dias Demasi; José Renato Rosa Cussiol; Karen Fulan Discola; Marilene Demasi; Gustavo Monteiro Silva; Simone Vidigal Alves; Victor Genu Faria; Bruno Brasil Horta

Collaboration


Dive into the José Renato Rosa Cussiol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ohara Augusto

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge