Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Vidigal Alves is active.

Publication


Featured researches published by Simone Vidigal Alves.


Journal of Biological Chemistry | 2003

Organic Hydroperoxide Resistance Gene Encodes a Thiol-dependent Peroxidase*

José Renato Rosa Cussiol; Simone Vidigal Alves; Marco Antônio Condé de Oliveira; Luis Eduardo Soares Netto

ohr (organic hydroperoxide resistance gene) is present in several species of bacteria, and its deletion renders cells specifically sensitive to organic peroxides. The goal of this work was to determine the biochemical function of Ohr fromXylella fastidiosa. All of the Ohr homologues possess two cysteine residues, one of them located in a VCP motif, which is also present in all of the proteins from the peroxiredoxin family. Therefore, we have investigated whether Ohr possesses thiol-dependent peroxidase activity. The ohrgene from X. fastidiosa was expressed in Escherichia coli, and the recombinant Ohr decomposed hydroperoxides in a dithiothreitol-dependent manner. Ohr was about twenty times more efficient to remove organic hydroperoxides than to remove H2O2. This result is consistent with the organic hydroperoxide sensitivity of Δohr strains. The dependence of Ohr on thiol compounds was ascertained by glutamine synthetase protection assays. Approximately two thiol equivalents were consumed per peroxide removed indicating that Ohr catalyzes the following reaction: 2RSH + ROOH → RSSR + ROH + H2O. Pretreatment of Ohr with N-ethyl maleimide and substitution of cysteine residues by serines inhibited this peroxidase activity indicating that both of the Ohr cysteines are important to the decomposition of peroxides. C125S still had a residual enzymatic activity indicating that Cys-61 is directly involved in peroxide removal. Monothiol compounds do not support the peroxidase activity of Ohr as well as thioredoxin from Saccharomyces cerevisiaeand from Spirulina. Interestingly, dithiothreitol and dyhydrolipoic acid, which possess two sulfhydryl groups, do support the peroxidase activity of Ohr. Taken together our results unequivocally demonstrated that Ohr is a thiol-dependent peroxidase.


Biochemistry | 2010

Insights into the Specificity of Thioredoxin Reductase-Thioredoxin Interactions. A Structural and Functional Investigation of the Yeast Thioredoxin System †

Marcos A. Oliveira; Karen Fulan Discola; Simone Vidigal Alves; Francisco J. Medrano; Beatriz G. Guimarães; Luis Eduardo Soares Netto

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 A resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M ). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.


Cell Biology International | 2010

In vivo uptake of a haem analogue Zn protoporphyrin IX by the human malaria parasite P. falciparum-infected red blood cells.

Robson Sartorello; Alexandre Budu; Piero Bagnaresi; Carlos A.H. Fernandes; Paloma M. Sato; Vania Blasques Bueno; Marcos R.M. Fontes; Pedro L. Oliveira; Gabriela O. Paiva-Silva; Simone Vidigal Alves; Luis Eduardo Soares Netto; Luiz H. Catalani; Célia R.S. Garcia

The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle‐like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake byP. falciparum‐infected erythrocytes shows that at R and S stages, a time‐increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time‐increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.


Journal of Biological Chemistry | 2017

Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2

Larissa A.C. Carvalho; Daniela R. Truzzi; Thamiris S. Fallani; Simone Vidigal Alves; José Carlos Toledo; Ohara Augusto; Luis Eduardo Soares Netto; Flavia C. Meotti

Urate hydroperoxide is a product of the oxidation of uric acid by inflammatory heme peroxidases. The formation of urate hydroperoxide might be a key event in vascular inflammation, where there is large amount of uric acid and inflammatory peroxidases. Urate hydroperoxide oxidizes glutathione and sulfur-containing amino acids and is expected to react fast toward reactive thiols from peroxiredoxins (Prxs). The kinetics for the oxidation of the cytosolic 2-Cys Prx1 and Prx2 revealed that urate hydroperoxide oxidizes these enzymes at rates comparable with hydrogen peroxide. The second-order rate constants of these reactions were 4.9 × 105 and 2.3 × 106 m−1 s−1 for Prx1 and Prx2, respectively. Kinetic and simulation data suggest that the oxidation of Prx2 by urate hydroperoxide occurs by a three-step mechanism, where the peroxide reversibly associates with the enzyme; then it oxidizes the peroxidatic cysteine, and finally, the rate-limiting disulfide bond is formed. Of relevance, the disulfide bond formation was much slower in Prx2 (k3 = 0.31 s−1) than Prx1 (k3 = 14.9 s−1). In addition, Prx2 was more sensitive than Prx1 to hyperoxidation caused by both urate hydroperoxide and hydrogen peroxide. Urate hydroperoxide oxidized Prx2 from intact erythrocytes to the same extent as hydrogen peroxide. Therefore, Prx1 and Prx2 are likely targets of urate hydroperoxide in cells. Oxidation of Prxs by urate hydroperoxide might affect cell function and be partially responsible for the pro-oxidant and pro-inflammatory effects of uric acid.


PLOS ONE | 2014

A 14.7 kDa Protein from Francisella tularensis subsp. novicida (Named FTN_1133), Involved in the Response to Oxidative Stress Induced by Organic Peroxides, Is Not Endowed with Thiol-Dependent Peroxidase Activity

Diogo de Abreu Meireles; Thiago Geronimo Pires Alegria; Simone Vidigal Alves; Carla Rani Rocha Arantes; Luis Eduardo Soares Netto

Francisella genus comprises Gram-negative facultative intracellular bacteria that are among the most infectious human pathogens. A protein of 14.7 KDa named as FTN_1133 was previously described as a novel hydroperoxide resistance protein in F. tularensis subsp. novicida, implicated in organic peroxide detoxification and virulence. Here, we describe a structural and biochemical characterization of FTN_1133. Contrary to previous assumptions, multiple amino acid sequence alignment analyses revealed that FTN_1133 does not share significant similarity with proteins of the Ohr/OsmC family or any other Cys-based, thiol dependent peroxidase, including conserved motifs around reactive cysteine residues. Circular dichroism analyses were consistent with the in silico prediction of an all-α-helix secondary structure. The pKa of its single cysteine residue, determined by a monobromobimane alkylation method, was shown to be 8.0±0.1, value that is elevated when compared with other Cys-based peroxidases, such as peroxiredoxins and Ohr/OsmC proteins. Attempts to determine a thiol peroxidase activity for FTN_1133 failed, using both dithiols (DTT, thioredoxin and lipoamide) and monothiols (glutathione or 2-mercaptoethanol) as reducing agents. Heterologous expression of FTN_1133 gene in ahpC and oxyR mutants of E. coli showed no complementation. Furthermore, analysis of FTN_1133 protein by non-reducing SDS-PAGE showed that an inter-molecular disulfide bond (not detected in Ohr proteins) can be generated under hydroperoxide treatment, but the observed rates were not comparable to those observed for other thiol-dependent peroxidases. All the biochemical and structural data taken together indicated that FTN_1133 displayed distinct characteristics from other thiol dependent peroxidases and, therefore, suggested that FTN_1133 is not directly involved in hydroperoxide detoxification.


Acta Crystallographica Section D-biological Crystallography | 2004

Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa.

Marcos Antonio de Oliveira; Luis Eduardo Soares Netto; Francisco J. Medrano; João Alexandre Ribeiro Gonçalves Barbosa; Simone Vidigal Alves; José Renato Rosa Cussiol; Beatriz G. Guimarães

Xylella fastidiosa organic hydroperoxide-resistance protein (Ohr) is a dithiol-dependent peroxidase that is widely conserved in several pathogenic bacteria with high affinity for organic hydroperoxides. The protein was crystallized using the hanging-drop vapour-diffusion method in the presence of PEG 4000 as precipitant after treatment with organic peroxide (t-butyl hydroperoxide). X-ray diffraction data were collected to a maximum resolution of 1.8 A using a synchrotron-radiation source. The crystal belongs to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 87.66, c = 160.28 A. The crystal structure was solved by molecular-replacement methods. The enzyme has a homodimeric quaternary structure similar to that observed for its homologue from Pseudomonas aeruginosa, but differs from the previous structure as the active-site residue Cys61 is oxidized. Structure refinement is in progress.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007

Crystallization and preliminary X-ray analysis of a decameric form of cytosolic thioredoxin peroxidase 1 (Tsa1), C47S mutant, from Saccharomyces cerevisiae

Marcos Antonio de Oliveira; Victor Genu; Karen Fulan Discola; Simone Vidigal Alves; Luis Eduardo Soares Netto; Beatriz G. Guimarães

Saccharomyces cerevisiae cytosolic thioredoxin peroxidase 1 (cTPxI or Tsa1) is a bifunctional enzyme with protective roles in cellular defence against oxidative and thermal stress that exhibits both peroxidase and chaperone activities. Protein overoxidation and/or high temperatures induce great changes in its quaternary structure and lead to its assembly into large complexes that possess chaperone activity. A recombinant mutant of Tsa1 from S. cerevisiae, with Cys47 substituted by serine, was overexpressed in Escherichia coli as a His(6)-tagged fusion protein and purified by nickel-affinity chromatography. Crystals were obtained from protein previously treated with 1,4-dithiothreitol by the hanging-drop vapour-diffusion method using PEG 3000 as precipitant and sodium fluoride as an additive. Diffraction data were collected to 2.8 A resolution using a synchrotron-radiation source. The crystal structure was solved by molecular-replacement methods and structure refinement is currently in progress.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2005

Crystallization and preliminary X-ray diffraction analysis of NADPH-dependent thioredoxin reductase I from Saccharomyces cerevisiae

Marcos Antonio de Oliveira; Karen Fulan Discola; Simone Vidigal Alves; João Alexandre Ribeiro Gonçalves Barbosa; Francisco J. Medrano; Luis Eduardo Soares Netto; Beatriz G. Guimarães

Thioredoxin reductase 1 (Trr1) from Saccharomyces cerevisiae is a member of the family of pyridine nucleotide-disulfide oxidoreductases capable of reducing the redox-active disulfide bond of the cytosolic thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2). NADPH, Trr1 and Trx1 (or Trx2) comprise the thioredoxin system, which is involved in several biological processes, including the reduction of disulfide bonds and response to oxidative stress. Recombinant Trr1 was expressed in Escherichia coli as a His6-tagged fusion protein and purified by nickel-affinity chromatography. The protein was crystallized using the hanging-drop vapour-diffusion method in the presence of PEG 3000 as precipitant after treatment with hydrogen peroxide. X-ray diffraction data were collected to a maximum resolution of 2.4 A using a synchrotron-radiation source. The crystal belongs to the centred monoclinic space group C2, with unit-cell parameters a = 127.97, b = 135.41, c = 75.81 A, beta = 89.95 degrees. The crystal structure was solved by molecular-replacement methods and structure refinement is in progress.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2007

Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signaling and more ☆

Luis Eduardo Soares Netto; Marcos Antonio de Oliveira; Gisele Monteiro; Ana Paula Dias Demasi; José Renato Rosa Cussiol; Karen Fulan Discola; Marilene Demasi; Gustavo Monteiro Silva; Simone Vidigal Alves; Victor Genu Faria; Bruno Brasil Horta


Free Radical Biology and Medicine | 2018

Bicarbonate increases peroxiredoxin 1 susceptibility to hyperoxidation

Daniela R. Truzzi; Fernando Rodrigues Coelho; Veronica Paviani; Simone Vidigal Alves; Luis Es Netto; Ohara Augusto

Collaboration


Dive into the Simone Vidigal Alves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ohara Augusto

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Medrano

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge