Jose Rey-Ladino
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jose Rey-Ladino.
Nature Reviews Immunology | 2005
Robert C. Brunham; Jose Rey-Ladino
Sexually transmitted Chlamydia trachomatis infections are a serious public-health problem. With more than 90 million new cases occurring annually, C. trachomatis is the most common cause of bacterial sexually transmitted disease worldwide. Recent progress in elucidating the immunobiology of Chlamydia muridarum infection of mice has helped to guide the interpretation of immunological findings in studies of human C. trachomatis infection and has led to the development of a common model of immunity. In this review, we describe our current understanding of the immune response to infection with Chlamydia spp. and how this information is improving the prospects for development of a vaccine against infection with C. trachomatis.
Journal of Immunology | 2008
Karuna P. Karunakaran; Jose Rey-Ladino; Nikolay Stoynov; Kyra B. Berg; C.-C. Shen; Xiaozhou Jiang; Brent R. Gabel; Hong Yu; Leonard J. Foster; Robert C. Brunham
Chlamydia infections cause substantial morbidity worldwide and effective prevention will depend on a vaccine. Since Chlamydia immunity is T cell-mediated, a major impediment to developing a molecular vaccine has been the difficulty in identifying relevant T cell Ags. In this study, we used a combination of affinity chromatography and tandem mass spectrometry to identify 13 Chlamydia peptides among 331 self-peptides presented by MHC class II (I-Ab) molecules from bone marrow-derived murine dendritic cells infected with Chlamydia muridarum. These MHC class II-bound peptides were recognized by Chlamydia-specific CD4 T cells harvested from immune mice and adoptive transfer of dendritic cells pulsed ex vivo with the peptides partially protected mice against intranasal and genital tract Chlamydia infection. The results provide evidence for lead vaccine candidates for a T cell-based subunit molecular vaccine against Chlamydia infection suitable for human study.
Infection and Immunity | 2008
Xiaozhou Jiang; C.-C. Shen; Jose Rey-Ladino; Hong Yu; Robert C. Brunham
ABSTRACT Dendritic cells (DCs) appear to orchestrate much of the immunobiology of Chlamydia infection, but most studies of Chlamydia-DC interaction have been limited by the availability and heterogeneity of primary bone marrow-derived DCs (BMDCs). We therefore evaluated the immunobiology of Chlamydia muridarum infection in an immortal DC line termed JAWS II derived from BMDCs of a C57BL/6 p53-knockout mouse. JAWS II cells were permissive to the developmental cycle of Chlamydia. Infection-induced cell death was 50 to 80% less in JAWS II cells than in BMDCs. Chlamydia infected JAWS II cells and yielded infectious progeny 10-fold greater than that with primary BMDCs. JAWS II cells showed an expression pattern of cell activation markers and cytokine secretion following Chlamydia infection similar to that of primary BMDCs by up-regulating the expression of CD86, CD40, and major histocompatibility complex class II and secreting significant amounts of interleukin-12 (IL-12) but not IL-10. JAWS II cells pulsed with Chlamydia stimulated immune CD4+ T cells to secrete gamma interferon. Adoptive transfer of ex vivo Chlamydia-pulsed JAWS II cells conferred levels of immunity on C57BL/6 mice similar to those conferred by primary BMDCs. Taken together, the data show that JAWS II cells exhibit immunobiological characteristics and functions similar to those of primary BMDCs in terms of Chlamydia antigen presentation in vitro and antigen delivery in vivo. We conclude that the JAWS II cell line can substitute for primary BMDCs in Chlamydia immunobiological studies.
Infection and Immunity | 2005
Jose Rey-Ladino; Kasra M. Koochesfahani; Michelle L. Zaharik; C.-C. Shen; Robert C. Brunham
ABSTRACT The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4+ T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4+ T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
Infection and Immunity | 2007
Jose Rey-Ladino; Xiaozhou Jiang; Brent R. Gabel; C.-C. Shen; Robert C. Brunham
ABSTRACT Immune responses to Chlamydia trachomatis underlay both immunity and immunopathology. Immunopathology in turn has been attributed to chronic persistent infection with persistence being defined as the presence of organisms in the absence of replication. We hypothesized that dendritic cells (DCs) play a central role in Chlamydia immunity and immunopathology by favoring the long-term survival of C. muridarum. This hypothesis was examined based on (i) direct staining of Chlamydia in infected DCs to evaluate the development of inclusions, (ii) titration of infected DCs on HeLa cells to determine cultivability, and (iii) transfer of Chlamydia-infected DCs to naive mice to evaluate infectivity. The results show that Chlamydia survived within DCs and developed both typical and atypical inclusions that persisted in a subpopulation of DCs for more than 9 days after infection. Since the cultivability of Chlamydia from DCs onto HeLa was lower than that estimated by the number of inclusions in DCs, this suggests that the organisms may be in state of persistence. Intranasal transfer of long-term infected DCs or DCs purified from the lungs of infected mice caused mouse lung infection, suggesting that in addition to persistent forms, infective Chlamydia organisms also developed within chronically infected DCs. Interestingly, after in vitro infection with Chlamydia, most DCs died. However, Chlamydia appeared to survive in a subpopulation of DCs that resisted infection-induced cell death. Surviving DCs efficiently presented Chlamydia antigens to Chlamydia-specific CD4+ T cells, suggesting that the bacteria are able to both direct their own survival and still allow DC antigen-presenting function. Together, these results raise the possibility that Chlamydia-infected DCs may be central to the maintenance of T-cell memory that underlies both immunity and immunopathology.
Immunology | 2007
Michelle L. Zaharik; Tarun Nayar; Rick White; Caixia Ma; Bruce A. Vallance; Nadine Straka; Xiaozhou Jiang; Jose Rey-Ladino; C.-C. Shen; Robert C. Brunham
Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide for which an effective vaccine is being actively pursued. Current vaccine efforts will be aided by elucidating the interaction between Chlamydia and dendritic cells (DCs). Protective immunity appears to develop slowly following natural infection in humans, and early vaccine trials using inactivated C. trachomatis resulted in partial, short‐lived protection with possible enhanced inflammatory pathology during re‐infection. Thus, immunity following natural infection with live chlamydia may differ fundamentally from immune responses induced by immunization with inactivated chlamydia. We explored this conjecture by studying the response of DCs exposed to either viable or inactivated [ultraviolet (UV) –irradiated] chlamydia elementary bodies (EBs; designated as Live‐EB and UV‐EB, respectively) using Affymetrix GeneChip microarrays. Thirty‐one immunologically characterized genes were differentially expressed by DCs following exposure to Live‐EB or UV‐EB, including two glutamic acid–leucine–arginine cysteine–X–cysteine (ELR CXC) neutrophil chemoattractant chemokines, Cxcl1 (KC), and Cxcl2 (MIP‐2). Up‐regulation of these genes by Live‐EB as compared to UV‐EB was verified by quantitative reverse transcription–polymerase chain reaction and increased chemokine secretion was confirmed by enzyme‐linked immunosorbent assay both in vitro and in vivo. Immunofluorescence and fluorescence‐activated cell sorter analysis of chlamydia‐infected lung tissue confirmed that Live‐EB but not UV‐EB induced significant DC and neutrophil infiltration during infection. These observations demonstrate that the development of an antichlamydial immune response is dramatically influenced by chlamydial viability. This has implications as to why early inactivated chlamydial vaccines were ineffective and suggests that new vaccine design efforts may benefit from in vitro DC screening for ELR chemokine expression profiles.
Blood | 2003
Muhammad Reza Marwali; Jose Rey-Ladino; Lisa Dreolini; Douglas Shaw; Fumio Takei
Experimental Parasitology | 1997
Jose Rey-Ladino; Phalgun B. Joshi; Bhag Singh; Rhadhey Gupta; Neil E. Reiner
Journal of Immunology | 1999
Jose Rey-Ladino; Michael Huber; Ling Liu; Jacqueline E. Damen; Gerald Krystal; Fumio Takei
Journal of Immunology | 1998
Jose Rey-Ladino; Andrew M. Pyszniak; Fumio Takei