Xiaozhou Jiang
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaozhou Jiang.
Journal of Immunology | 2008
Karuna P. Karunakaran; Jose Rey-Ladino; Nikolay Stoynov; Kyra B. Berg; C.-C. Shen; Xiaozhou Jiang; Brent R. Gabel; Hong Yu; Leonard J. Foster; Robert C. Brunham
Chlamydia infections cause substantial morbidity worldwide and effective prevention will depend on a vaccine. Since Chlamydia immunity is T cell-mediated, a major impediment to developing a molecular vaccine has been the difficulty in identifying relevant T cell Ags. In this study, we used a combination of affinity chromatography and tandem mass spectrometry to identify 13 Chlamydia peptides among 331 self-peptides presented by MHC class II (I-Ab) molecules from bone marrow-derived murine dendritic cells infected with Chlamydia muridarum. These MHC class II-bound peptides were recognized by Chlamydia-specific CD4 T cells harvested from immune mice and adoptive transfer of dendritic cells pulsed ex vivo with the peptides partially protected mice against intranasal and genital tract Chlamydia infection. The results provide evidence for lead vaccine candidates for a T cell-based subunit molecular vaccine against Chlamydia infection suitable for human study.
Infection and Immunity | 2010
Hong Yu; Xiaozhou Jiang; C.-C. Shen; Karuna P. Karunakaran; Janina Jiang; Nicole L. Rosin; Robert C. Brunham
ABSTRACT Major impediments to developing a Chlamydia vaccine lie in identifying immunologically relevant T-cell antigens and delivery in a manner to stimulate protective immunity. Using an immunoproteomic approach, we previously identified three immunodominant Chlamydia T-cell antigens (PmpG-1, PmpE/F-2, and RplF). Because RplF has high homology to a human ortholog, it may not be suitable for human vaccine development. Therefore, in this study, we evaluated protection against Chlamydia infection in the genital tract in C57BL/6 mice immunized with Chlamydia-specific membrane proteins PmpG-1, PmpE/F-2, and major outer membrane protein (MOMP; as a reference) or a combination of them formulated with one of three adjuvants, CpG oligodeoxynucleotide (CpG-ODN), AbISCO-100 (AbISCO), or DDA/TDB (dimethyldioctadecylammonium bromide/d-(+)-trehalose 6,6′-dibehenate). The results show that immunization with the CpG-ODN formulation failed to provide protection against Chlamydia infection; the AbISCO formulation conferred moderate protection, and the DDA/TDB formulation showed the highest degree of protective efficacy. The combination of PmpG-1, PmpE/F-2, and MOMP proteins formulated with DDA/TDB exhibited the greatest degree of protection among all vaccine groups studied. Moreover, this vaccine combination also engendered significant protection in BALB/c mice, which have a different major histocompatibility complex (MHC) background. We measured cell-mediated immune cytokine responses in mice immunized with PmpG-1 mixed with each of the three adjuvants. The results demonstrate that mice immunized with the DDA/TDB formulation induced the strongest gamma interferon (IFN-γ) and interleukin-17 (IL-17) responses, characterized by the highest frequency of IFN-γ/tumor necrosis factor alpha (TNF-α) and IFN-γ/IL-17 double-positive CD4+ T cells. In conclusion, a Chlamydia vaccine based on the recombinant proteins PmpG-1, PmpE/F-2, and MOMP delivered in a DDA/TDB adjuvant conferred protection against infection that correlated with IFN-γ/TNF-α and IFN-γ/IL-17 double-positive CD4+ T cells.
Journal of Immunology | 2011
Hong Yu; Karuna P. Karunakaran; Isabelle Kelly; C.-C. Shen; Xiaozhou Jiang; Leonard J. Foster; Robert C. Brunham
Mice that were intranasally vaccinated with live or dead Chlamydia muridarum with or without CpG-containing oligodeoxynucleotide 1862 elicited widely disparate levels of protective immunity to genital tract challenge. We found that the frequency of multifunctional T cells coexpressing IFN-γ and TNF-α with or without IL-2 induced by live C. muridarum most accurately correlated with the pattern of protection against C. muridarum genital tract infection, suggesting that IFN-γ+–producing CD4+ T cells that highly coexpress TNF-α may be the optimal effector cells for protective immunity. We also used an immunoproteomic approach to analyze MHC class II-bound peptides eluted from dendritic cells (DCs) that were pulsed with live or dead C. muridarum elementary bodies (EBs). We found that DCs pulsed with live EBs presented 45 MHC class II C. muridarum peptides mapping to 13 proteins. In contrast, DCs pulsed with dead EBs presented only six MHC class II C. muridarum peptides mapping to three proteins. Only two epitopes were shared in common between the live and dead EB-pulsed groups. This study provides insights into the role of Ag presentation and cytokine secretion patterns of CD4+ T effector cells that correlate with protective immunity elicited by live and dead C. muridarum. These insights should prove useful for improving vaccine design for Chlamydia trachomatis.
Infection and Immunity | 2008
Xiaozhou Jiang; C.-C. Shen; Jose Rey-Ladino; Hong Yu; Robert C. Brunham
ABSTRACT Dendritic cells (DCs) appear to orchestrate much of the immunobiology of Chlamydia infection, but most studies of Chlamydia-DC interaction have been limited by the availability and heterogeneity of primary bone marrow-derived DCs (BMDCs). We therefore evaluated the immunobiology of Chlamydia muridarum infection in an immortal DC line termed JAWS II derived from BMDCs of a C57BL/6 p53-knockout mouse. JAWS II cells were permissive to the developmental cycle of Chlamydia. Infection-induced cell death was 50 to 80% less in JAWS II cells than in BMDCs. Chlamydia infected JAWS II cells and yielded infectious progeny 10-fold greater than that with primary BMDCs. JAWS II cells showed an expression pattern of cell activation markers and cytokine secretion following Chlamydia infection similar to that of primary BMDCs by up-regulating the expression of CD86, CD40, and major histocompatibility complex class II and secreting significant amounts of interleukin-12 (IL-12) but not IL-10. JAWS II cells pulsed with Chlamydia stimulated immune CD4+ T cells to secrete gamma interferon. Adoptive transfer of ex vivo Chlamydia-pulsed JAWS II cells conferred levels of immunity on C57BL/6 mice similar to those conferred by primary BMDCs. Taken together, the data show that JAWS II cells exhibit immunobiological characteristics and functions similar to those of primary BMDCs in terms of Chlamydia antigen presentation in vitro and antigen delivery in vivo. We conclude that the JAWS II cell line can substitute for primary BMDCs in Chlamydia immunobiological studies.
Infection and Immunity | 2012
Hong Yu; Karuna P. Karunakaran; Xiaozhou Jiang; C.-C. Shen; Peter Andersen; Robert C. Brunham
ABSTRACT Major impediments to a Chlamydia vaccine lie in discovering T cell antigens and polarizing adjuvants that stimulate protective immunity. We previously reported the discovery of three T cell antigens (PmpG, PmpF, and RplF) via immunoproteomics that elicited protective immunity in the murine genital tract infection model against Chlamydia infection after adoptive transfer of antigen-pulsed dendritic cells. To expand the T cell antigen repertoire necessary for a Chlamydia vaccine, we evaluated 10 new Chlamydia T cell antigens discovered via immunoproteomics in addition to the 3 antigens reported earlier as a molecular subunit vaccine. We first tested five adjuvants, including three cationic liposome formulations (dimethyldioctadecylammonium bromide-monophosphoryl lipid A [DDA-MPL], DDA-trehalose 6,6′-dibehenate [DDA-TDB {CAF01}], and DDA-monomycolyl glycerol [DDA-MMG {CAF04}]), Montanide ISA720–CpG-ODN1826, and alum using the PmpG protein as a model T cell antigen in the mouse genital tract infection model. The results showed that the cationic liposomal adjuvants DDA-MPL and DDA-TDB elicited the best protective immune responses, characterized by multifunctional CD4+ T cells coexpressing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), and reduced infection by more than 3 logs. Using DDA-MPL as an adjuvant, we found that 7 of 13 Chlamydia T cell antigens (PmpG, PmpE, PmpF, Aasf, RplF, TC0420, and TC0825) conferred protection better than or equal to that of the reference vaccine antigen, major outer membrane protein (MOMP). Pools of membrane/secreted proteins, cytoplasmic proteins, and hypothetical proteins were tested individually or in combination. Immunization with combinations protected as well as the best individual protein in that combination. The T cell antigens and adjuvants discovered in this study are of further interest in the development of a molecularly defined Chlamydia vaccine.
Journal of Immunology | 2009
Hong Yu; Xiaozhou Jiang; C.-C. Shen; Karuna P. Karunakaran; Robert C. Brunham
Using a combination of affinity chromatography and tandem mass spectrometry, we recently identified 8 MHC class II (I-Ab) -bound Chlamydia peptides eluted from dendritic cells (DCs) infected with Chlamydia muridarum. In this study we cloned and purified the source proteins that contained each of these peptides and determined that three of the eight peptide/protein Ags were immunodominant (PmpG-1, RplF, and PmpE/F-2) as identified by IFN-γ ELISPOT assay using splenocytes from C57BL/6 mice recovered from C. muridarum infection. To evaluate whether the three immunodominant Chlamydia protein Ags were also able to protect mice against Chlamydia infection in vivo, we adoptively transferred LPS-matured DCs transfected ex vivo with the cationic liposome DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate) and individual PmpG-1(25–500aa), RplF, or PmpE/F-2 (25–575 aa) proteins. The results showed that the transfected Chlamydia proteins were efficiently delivered intracellularly into DCs. Mice vaccinated with DCs transfected with individual Chlamydia protein PmpG-125–500, RplF, or PmpE/F-225–575 exhibited significant resistance to challenge infection as indicated by reduction in the median Chlamydia inclusion forming units in both the lung and genital tract models. The major outer membrane protein was used as a reference Ag but conferred significant protection only in the genital tract model. Overall, vaccination with DCs transfected with PmpG-125–500 exhibited the greatest degree of protective immunity among the four Chlamydia Ags tested. This study demonstrates that T cell peptide Ags identified by immunoproteomics can be successfully exploited as T cell protein-based subunit vaccines and that PmpG-125–500 protein may be a suitable vaccine candidate for further evaluation.
Immunology | 2010
Xiaozhou Jiang; C.-C. Shen; Hong Yu; Karuna P. Karunakaran; Robert C. Brunham
We investigated the phenotypic basis for genetically determined differences in susceptibility and resistance to Chlamydia muridarum pulmonary infection using BALB/c and C57BL/6 mice. Following C. muridarum intranasal inoculation, the intensity of infection was very different between BALB/c and C57BL/6 beginning as early as 3 days post‐infection. Intrapulmonary cytokine patterns also differed at early time‐points (days 2 and 4) between these two strains of mice. The early recruitment of neutrophils to lung tissue was greater in BALB/c than in C57BL/6 mice and correlated with a higher number of inclusion forming units (IFU) of C. muridarum. At day 12 post‐infection, BALB/c mice continued to demonstrate a greater burden of infection, significantly higher lung cytokine levels for tumour necrosis factor‐α and interleukin‐17 (IL‐17) and a significantly lower level for interferon‐γ than did C57BL/6 mice. In vitro, bone‐marrow‐derived dendritic cells (BMDCs) from BALB/c mice underwent less functional maturation in response to C. muridarum infection than did BMDCs from C57BL/6 mice. The BMDCs of BALB/c mice expressed lower levels of activation markers (CD80, CD86, CD40 and major histocompatibility complex class II) and secreted less IL‐12 and more IL‐23 than BMDCs from C57BL/6 mice. Overall, the data demonstrate that the differences exhibited by BALB/c and C57BL/6 mice following C. muridarum pulmonary infection are associated with differences in early innate cytokine and cellular responses that are correlated with late differences in T helper type 17 versus type 1 adaptive immune responses.
Vaccine | 2014
Hong Yu; Karuna P. Karunakaran; Xiaozhou Jiang; Robert C. Brunham
An efficacious vaccine is needed to control Chlamydia trachomatis infection. In the murine model of Chlamydia muridarum genital infection, multifunctional mucosal CD4 T cells are the foundation for protective immunity, with antibody playing a secondary role. We previously identified four Chlamydia outer membrane proteins (PmpE, PmpF, PmpG and PmpH) as CD4 T cell vaccine candidates using a dendritic cell-based immunoproteomic approach. We also demonstrated that these four polymorphic membrane proteins (Pmps) individually conferred protection as measured by accelerated clearance of Chlamydia infection in the C57BL/6 murine genital tract model. The major outer membrane protein, MOMP is also a well-studied protective vaccine antigen in this system. In the current study, we tested immunogenicity and protection of a multisubunit recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with or without the major outer membrane protein (MOMP) formulated with a Th1 polarizing adjuvant in C57BL/6, Balb/c and C3H mice. We found that C57BL/6 mice vaccinated with PmpEFGH+MOMP elicited more robust cellular immune responses than mice immunized with individual protein antigens. Pmps elicited more variable cellular immune responses than MOMP among the three strains of mice. The combination vaccine accelerated clearance in the three strains of mice although at different rates. We conclude that the recombinant outer membrane protein combination constitutes a promising first generation Chlamydia vaccine construct that should provide broad immunogenicity in an outbred population.
Vaccine | 2015
Karuna P. Karunakaran; Hong Yu; Xiaozhou Jiang; Queenie Chan; Kyung-Mee Moon; Leonard J. Foster; Robert C. Brunham
CD4 T cell immune responses such as interferon-γ and tumor necrosis factor-α secretion are necessary for Chlamydia immunity. We used an immunoproteomic approach in which Chlamydia trachomatis and Chlamydia muridarum-derived peptides presented by MHC class II molecules on the surface of infected dendritic cells (DCs) were identified by tandem mass spectrometry using bone marrow derived DCs (BMDCs) from mice of different MHC background. We first compared the C. muridarum immunoproteome in C3H mice to that previously identified in C57BL/6 mice. Fourteen MHC class II binding peptides from 11 Chlamydia proteins were identified from C3H infected BMDCs. Two C. muridarum proteins overlapped between C3H and C57B/6 mice and both were polymorphic membrane proteins (Pmps) which presented distinct class II binding peptides. Next we studied DCs from C57BL/6 mice infected with the human strain, C. trachomatis serovar D. Sixty MHC class II binding peptides derived from 27 C. trachomatis proteins were identified. Nine proteins were orthologous T cell antigens between C. trachomatis and C. muridarum and 2 of the nine were Pmps which generated MHC class II binding epitopes at distinct sequences within the proteins. As determined by antigen specific splenocyte responses outer membrane proteins PmpF, -G and -H and the major outer membrane protein (MOMP) were antigenic in mice previously infected with C. muridarum or C. trachomatis. Furthermore a recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with MOMP formulated with a Th1 polarizing adjuvant significantly accelerated (p<0.001) clearance in the C57BL/6 mice C. trachomatis transcervical infection model. We conclude that Chlamydia outer membrane proteins are important T cell antigens useful in the development of a C. trachomatis subunit vaccine.
Infection and Immunity | 2007
Jose Rey-Ladino; Xiaozhou Jiang; Brent R. Gabel; C.-C. Shen; Robert C. Brunham
ABSTRACT Immune responses to Chlamydia trachomatis underlay both immunity and immunopathology. Immunopathology in turn has been attributed to chronic persistent infection with persistence being defined as the presence of organisms in the absence of replication. We hypothesized that dendritic cells (DCs) play a central role in Chlamydia immunity and immunopathology by favoring the long-term survival of C. muridarum. This hypothesis was examined based on (i) direct staining of Chlamydia in infected DCs to evaluate the development of inclusions, (ii) titration of infected DCs on HeLa cells to determine cultivability, and (iii) transfer of Chlamydia-infected DCs to naive mice to evaluate infectivity. The results show that Chlamydia survived within DCs and developed both typical and atypical inclusions that persisted in a subpopulation of DCs for more than 9 days after infection. Since the cultivability of Chlamydia from DCs onto HeLa was lower than that estimated by the number of inclusions in DCs, this suggests that the organisms may be in state of persistence. Intranasal transfer of long-term infected DCs or DCs purified from the lungs of infected mice caused mouse lung infection, suggesting that in addition to persistent forms, infective Chlamydia organisms also developed within chronically infected DCs. Interestingly, after in vitro infection with Chlamydia, most DCs died. However, Chlamydia appeared to survive in a subpopulation of DCs that resisted infection-induced cell death. Surviving DCs efficiently presented Chlamydia antigens to Chlamydia-specific CD4+ T cells, suggesting that the bacteria are able to both direct their own survival and still allow DC antigen-presenting function. Together, these results raise the possibility that Chlamydia-infected DCs may be central to the maintenance of T-cell memory that underlies both immunity and immunopathology.