Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Teixeira is active.

Publication


Featured researches published by Jose Teixeira.


Nature Genetics | 2009

Lin28 promotes transformation and is associated with advanced human malignancies

Srinivas R. Viswanathan; John T. Powers; William S. Einhorn; Yujin Hoshida; Tony Ng; Sara Toffanin; Maureen J. O'Sullivan; Jun Lu; Letha A. Phillips; Victoria L Lockhart; Samar P. Shah; Pradeep S. Tanwar; Craig H. Mermel; Rameen Beroukhim; Mohammad Azam; Jose Teixeira; Matthew Meyerson; Timothy P. Hughes; Josep M. Llovet; Jerald P. Radich; Charles G. Mullighan; Todd R. Golub; Poul H. Sorensen; George Q. Daley

Multiple members of the let-7 family of miRNAs are often repressed in human cancers, thereby promoting oncogenesis by derepressing targets such as HMGA2, K-Ras and c-Myc. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins LIN28 and LIN28B block let-7 precursors from being processed to mature miRNAs, suggesting that their overexpression might promote malignancy through repression of let-7. Here we show that LIN28 and LIN28B are overexpressed in primary human tumors and human cancer cell lines (overall frequency ∼15%), and that overexpression is linked to repression of let-7 family miRNAs and derepression of let-7 targets. LIN28 and LIN28b facilitate cellular transformation in vitro, and overexpression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28 and LIN28B with poor clinical prognosis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Small-angle scattering and the structure of ambient liquid water

Gary N. I. Clark; Greg L. Hura; Jose Teixeira; Alan K. Soper; Teresa Head-Gordon

Structural polyamorphism has been promoted as a means for understanding the anomalous thermodynamics and dynamics of water in the experimentally inaccessible supercooled region. In the metastable liquid region, theory has hypothesized the existence of a liquid-liquid critical point from which a dividing line separates two water species of high and low density. A recent small-angle X-ray scattering study has claimed that the two structural species postulated in the supercooled state are seen to exist in bulk water at ambient conditions. We analyze new small-angle X-ray scattering data on ambient liquid water taken at third generation synchrotron sources, and large 32,000 water molecule simulations using the TIP4P-Ew model of water, to show that the small-angle region measures standard number density fluctuations consistent with water’s isothermal compressibility temperature trends. Our study shows that there is no support or need for heterogeneities in water structure at room temperature to explain the small-angle scattering data, as it is consistent with a unimodal density of the tetrahedral liquid at ambient conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics

Paul P. Szotek; Henry L. Chang; Kristen Brennand; Akihiro Fujino; Rafael Pieretti-Vanmarcke; Cristina Lo Celso; David Dombkowski; Frederic I. Preffer; Kenneth Cohen; Jose Teixeira; Patricia K. Donahoe

Ovulation induces cyclic rupture and regenerative repair of the ovarian coelomic epithelium. This process of repeated disruption and repair accompanied by complex remodeling typifies a somatic stem/progenitor cell-mediated process. Using BrdU incorporation and doxycycline inducible histone2B-green fluorescent protein pulse–chase techniques, we identify a label-retaining cell population in the coelomic epithelium of the adult mouse ovary as candidate somatic stem/progenitor cells. The identified population exhibits quiescence with asymmetric label retention, functional response to estrous cycling in vivo by proliferation, enhanced growth characteristics by in vitro colony formation, and cytoprotective mechanisms by enrichment for the side population. Together, these characteristics identify the label-retaining cell population as a candidate for the putative somatic stem/progenitor cells of the coelomic epithelium of the mouse ovary.


Biology of Reproduction | 2009

Constitutive Activation of Beta-Catenin in Uterine Stroma and Smooth Muscle Leads to the Development of Mesenchymal Tumors in Mice

Pradeep S. Tanwar; Ho Joon Lee; LiHua Zhang; Lawrence R. Zukerberg; Makoto M. Taketo; Bo R. Rueda; Jose Teixeira

Leiomyomas and other mesenchymally derived tumors are the most common neoplasms of the female reproductive tract. Presently, very little is known about the etiology and progression of these tumors, which are the primary indication for hysterectomies. Dysregulated WNT signaling through beta-catenin is a well-established mechanism for tumorigenesis. We have developed a mouse model that expresses constitutively activated beta-catenin in uterine mesenchyme driven by the expression of Cre recombinase knocked into the Müllerian-inhibiting substance type II receptor promoter locus to investigate its effects on uterine endometrial stroma and myometrium. These mice show myometrial hyperplasia and develop mesenchymal tumors with 100% penetrance that exhibit histological and molecular characteristics of human leiomyomas and endometrial stromal sarcomas. By immunohistochemistry, we also show that both transforming growth factor beta and the mammalian target of rapamycin are induced by constitutive activation of beta-catenin. The prevalence of the tumors was greater in multiparous mice, suggesting that their development may be a hormonally driven process or that changes in uterine morphology during pregnancy and after parturition induce injury and repair mechanisms that stimulate tumorigenesis from stem/progenitor cells, which normally do not express constitutively activated beta-catenin. Additionally, adenomyosis and endometrial gland hyperplasia were occasionally observed in some mice. These results show evidence suggesting that dysregulated, stromal, and myometrial WNT/beta-catenin signaling has pleiotropic effects on uterine function and tumorigenesis.


Endocrinology | 1999

Müllerian-inhibiting substance regulates androgen synthesis at the transcriptional level.

Jose Teixeira; Eric Fynn-Thompson; Anita H. Payne; Patricia K. Donahoe

Mullerian-inhibiting substance (MIS) is a hormone produced by Sertoli cells of the fetal testes that causes regression of the Mullerian ducts, the precursors to female reproductive tract structures that are present in the bipotential urogenital ridge. MIS is also produced in the adult gonads of both males and females, albeit at much lower levels than those measured during the fetal and perinatal periods. Adult transgenic mice chronically overexpressing MIS exhibit severe gonadal abnormalities and, in males, dramatically reduced levels of testosterone, which might lead to the incomplete virilization observed in some of the males. To understand the roles played by MIS in the adult gonad, we performed Northern analyses to show that the MIS type II receptor is expressed in purified Leydig cells and in two rodent Leydig cell lines, R2C and MA-10. Addition of purified recombinant human MIS to cultures of both R2C and MA-10 cells reduced steroid production. With MA-10 cells, the reduction of testosterone secreti...


Biology of Reproduction | 2010

Constitutive WNT/Beta-Catenin Signaling in Murine Sertoli Cells Disrupts Their Differentiation and Ability to Support Spermatogenesis

Pradeep S. Tanwar; Tomoko Kaneko-Tarui; Li Hua Zhang; Poonam Rani; Makoto M. Taketo; Jose Teixeira

Abstract Sertoli and germ cell interactions are essential for spermatogenesis and, thus, male fertility. Sertoli cells provide a specialized microenvironment for spermatogonial stem cells to divide, allowing both self-renewal and spermatogenesis. In the present study, we used mice with a conditional activated allele of the beta-catenin gene (Ctnnb1tm1Mmt/+) in Sertoli cells expressing Cre recombinase driven by the anti-Müllerian hormone (AMH; also known as Müllerian-inhibiting substance) type II receptor promoter (Amhr2tm3(cre)Bhr/+) to show that constitutively activated beta-catenin leads to their continuous proliferation and compromised differentiation. Compared to controls, Sertoli cells in mature mutant mice continue to express high levels of both AMH and glial cell-derived neurotrophic factor (GDNF), which normally are expressed only in immature Sertoli cells. We also show evidence that LiCl treatment, which activates endogenous nuclear beta-catenin activity, regulates both AMH and GDNF expression at the transcriptional level. The epididymides were devoid of sperm in the Amhr2tm3(cre)Bhr/+;Ctnnb1tm1Mmt/+ mice at all ages examined. We show that the mutant mice are infertile because of defective differentiation of germ cells and increased apoptosis, both of which are characteristic of GDNF overexpression in Sertoli cells. Constitutive activation of beta-catenin in Amhr2-null mice showed the same histology, suggesting that the phenotype was the result of persistent overexpression of GDNF. These results show that dysregulated wingless-related MMTV integration site/beta-catenin signaling in Sertoli cells inhibits their postnatal differentiation, resulting in increased germ cell apoptosis and infertility.


Stem Cells | 2007

Adult Mouse Myometrial Label‐Retaining Cells Divide in Response to Gonadotropin Stimulation

Paul P. Szotek; Henry L. Chang; LiHua Zhang; Frederic I. Preffer; David Dombkowski; Patricia K. Donahoe; Jose Teixeira

Conditional deletion of β‐catenin in the Müllerian duct mesenchyme results in a degenerative uterus characterized by replacement of the myometrial smooth muscle with adipose tissue. We hypothesized that the mouse myometrium houses somatic smooth muscle progenitor cells that are hormonally responsive and necessary for remodeling and regeneration during estrous cycling and pregnancy. We surmise that the phenotype observed in β‐catenin conditionally deleted mice is the result of dysregulation of these progenitor cells. The objective of this study was to identify the mouse myometrial smooth muscle progenitor cell and its niche, define the surface marker phenotype, and show a functional response of these cells to normal myometrial cycling. Uteri were labeled with 5‐bromo‐2′‐deoxyuridine (BrdU) and chased for up to 14 weeks. Myometrial label‐retaining cells (LRCs) were observed in the myometrium and stroma throughout the chase period. After 12 weeks, phenotypic analysis of the LRCs by immunofluorescence demonstrated that the majority of LRCs colocalized with α‐smooth muscle actin, estrogen receptor‐α, and β‐catenin. Flow cytometry of myometrial cells identified a myometrial Hoechst 33342 effluxing “side population” that expresses MISRII‐Cre‐driven YFP. Functional response of LRCs was investigated by human chorionic gonadotropin stimulation of week 12 chase mice and demonstrated sequential proliferation of LRCs in the endometrial stroma, followed by the myometrium. These results suggest that conventional myometrial regeneration and repair is executed by hormonally responsive stem or progenitor cells derived from the Müllerian duct mesenchyme.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance

Katia Meirelles; Leo Benedict; David Dombkowski; David Pepin; Frederic I. Preffer; Jose Teixeira; Pradeep S. Tanwar; Robert H. Young; David T. MacLaughlin; Patricia K. Donahoe; Xiaolong Wei

Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3−Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad− subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad− cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.


Development | 2006

Müllerian inhibiting substance regulates its receptor/SMAD signaling and causes mesenchymal transition of the coelomic epithelial cells early in Müllerian duct regression

Yong Zhan; Akihiro Fujino; David T. MacLaughlin; Paul P. Szotek; Nelson A. Arango; Jose Teixeira; Patricia K. Donahoe

Examination of Müllerian inhibiting substance (MIS) signaling in the rat in vivo and in vitro revealed novel developmental stage- and tissue-specific events that contributed to a window of MIS responsiveness in Müllerian duct regression. The MIS type II receptor (MISRII)-expressing cells are initially present in the coelomic epithelium of both male and female urogenital ridges, and then migrate into the mesenchyme surrounding the male Müllerian duct under the influence of MIS. Expression of the genes encoding MIS type I receptors, Alk2 and Alk3, is also spatiotemporally controlled; Alk2 expression appears earlier and increases predominantly in the coelomic epithelium, whereas Alk3 expression appears later and is restricted to the mesenchyme, suggesting sequential roles in Müllerian duct regression. MIS induces expression of Alk2, Alk3 and Smad8, but downregulates Smad5 in the urogenital ridge. Alk2-specific small interfering RNA (siRNA) blocks both the transition of MISRII expression from the coelomic epithelium to the mesenchyme and Müllerian duct regression in organ culture. Müllerian duct regression can also be inhibited or accelerated by siRNA targeting Smad8 and Smad5, respectively. Thus, the early action of MIS is to initiate an epithelial-to-mesenchymal transition of MISRII-expressing cells and to specify the components of the receptor/SMAD signaling pathway by differentially regulating their expression.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Müllerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics

Xiaolong Wei; David Dombkowski; Katia Meirelles; Rafael Pieretti-Vanmarcke; Paul P. Szotek; Henry L. Chang; Frederic I. Preffer; Peter R. Mueller; Jose Teixeira; David T. MacLaughlin; Patricia K. Donahoe

Cancer stem cells are proposed to be tumor-initiating cells capable of tumorigenesis, recurrence, metastasis, and drug resistance, and, like somatic stem cells, are thought to be capable of unlimited self-renewal and, when stimulated, proliferation and differentiation. Here we select cells by expression of a panel of markers to enrich for a population with stem cell-like characteristics. A panel of eight was initially selected from 95 human cell surface antigens as each was shared among human ovarian primary cancers, ovarian cancer cell lines, and normal fimbria. A total of 150 combinations of markers were reduced to a panel of three—CD44, CD24, and Epcam—which selected, in three ovarian cancer cell lines, those cells which best formed colonies. Cells expressing CD44, CD24, and Epcam exhibited stem cell characteristics of shorter tumor-free intervals in vivo after limiting dilution, and enhanced migration in invasion assays in vitro. Also, doxorubicin, cisplatin, and paclitaxel increased this enriched population which, conversely, was significantly inhibited by Müllerian inhibiting substance (MIS) or the MIS mimetic SP600125. These findings demonstrate that flow cytometry can be used to detect a population which shows differential drug sensitivity, and imply that treatment of patients can be individualized to target both stem/progenitor cell enriched and nonenriched subpopulations. The findings also suggest that this population, amenable to isolation by flow cytometry, can be used to screen for novel treatment paradigms, including biologic agents such as MIS, which will improve outcomes for patients with ovarian cancer.

Collaboration


Dive into the Jose Teixeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge