Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda L. Patterson is active.

Publication


Featured researches published by Amanda L. Patterson.


Stem Cells and Development | 2013

Mesenchymal-to-Epithelial Transition Contributes to Endometrial Regeneration Following Natural and Artificial Decidualization

Amanda L. Patterson; Ling Zhang; Nelson A. Arango; Jose Teixeira; James K. Pru

Despite being a histologically dynamic organ, mechanisms coordinating uterine regeneration during the menstrual/estrous cycle and following parturition are poorly understood. In the current study, we hypothesized that endometrial epithelial tissue regeneration is accomplished, in part, by mesenchymal-to-epithelial transition (MET). To test this hypothesis, fate mapping studies were completed using a double transgenic (Tg) reporter strain, Amhr2-Cre; Rosa26-Stop(fl/fl-EYFP) (i.e., flox-stop EYFP reporter). EYFP expression was observed in Müllerian duct mesenchyme-derived stroma and myometrium, but not epithelia in young and peripubertal double Tg female mice. However, mosaic EYFP expression was observed in epithelia of double Tg mice after parturition. To ensure the observed epithelial EYFP expression was not due to leaky Amhr2 promoter activity, resulting in aberrant Cre expression, transgenic mice expressing LacZ under the control of the Amhr2 promoter (Amhr2-LacZ) were used to monitor β-galactosidase (β-Gal) activity within the uterus. β-Gal activity was not detected in luminal or glandular epithelia regardless of age, reproductive status, or degree of damage incurred within the uterus. Lastly, a unique population of transitional cells was identified that expressed the epithelial cell marker, pan-cytokeratin, and the stromal cell marker, vimentin. These cells localized predominantly to the regeneration zone in the mesometrial region of the endometrium. These findings suggest a previously unappreciated role for MET in endometrial regeneration and have important implications for proliferative diseases of the endometrium such as endometriosis.


Cell Cycle | 2013

Long-term label retaining cells localize to distinct regions within the female reproductive epithelium

Amanda L. Patterson; James K. Pru

The uterus is an extremely plastic organ that undergoes cyclical remodeling including endometrial regeneration during the menstrual cycle. Endometrial remodeling and regeneration also occur during pregnancy and following parturition, particularly in hemochorial implanting species. The mechanisms of endometrial regeneration are not well understood. Endometrial stem/progenitor cells are proposed to contribute to endometrial regeneration in both humans and mice. BrdU label retention has been used to identify potential stem/progenitor cells in mouse endometrium. However, methods are not available to isolate BrdU label-retaining cells (LRC) for functional analyses. Therefore, we employed a transgenic mouse model to identify H2B-GFP LRCs throughout the female reproductive tract with particular interest on the endometrium. We hypothesized that the female reproductive tract contains a population of long-term LRCs that persist even following pregnancy and endometrial regeneration. Endometrial cells were labeled (pulsed) either transplacentally/translactationally or peripubertally. When mice were pulsed transplacentally/translactationally, the label was not retained in the uterus. However, LRCs were concentrated to the distal oviduct and endocervical transition zone (TZ) following natural (i.e., pregnancy/parturition induced) and mechanically induced endometrial regeneration. LRCs in the distal oviduct and endocervical TZ expressed stem cell markers and did not express ERα or PGR, implying the undifferentiated phenotype of these cells. Oviduct and endocervical TZ LRCs did not proliferate during endometrial re-epithelialization, suggesting that they do not contribute to the endometrium in a stem/progenitor cell capacity. In contrast, when mice were pulsed peripubertally long-term LRCs were identified in the endometrial glandular compartment in mice as far out as 9 months post-pulse. These findings suggest that epithelial tissue of the female reproductive tract contains 3 distinct populations of epithelial cells that exhibit stem/progenitor cell qualities. Distinct stem/progenitor-like cells localize to the oviduct, endometrium, and cervix.


Reproductive Biology and Endocrinology | 2012

Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization

Ling Zhang; Amanda L. Patterson; LiHua Zhang; Jose Teixeira; James K. Pru

BackgroundBeta-catenin is part of a protein complex associated with adherens junctions. When allowed to accumulate to sufficient levels in its dephosphorylated form, beta-catenin serves as a transcriptional co-activator associated with a number of signaling pathways, including steroid hormone signaling pathways.MethodsTo investigate the role of beta-catenin in progesterone (P4) signaling and female reproductive physiology, conditional ablation of Ctnnb1 from the endometrial mesenchymal (i.e. stromal and myometrial), but not epithelial, compartment was accomplished using the Amhr2-Cre mice. Experiments were conducted to assess the ability of mutant female mice to undergo pregnancy and pseudopregnancy by or through oil-induced decidualization. The ability of uteri from mutant female mice to respond to estrogen (E2) and P4 was also determined.ResultsConditional deletion of Ctnnb1 from the mesenchymal compartment of the uterus resulted in infertility stemming, in part, from complete failure of the uterus to decidualize. E2-stimulated epithelial cell mitosis and edematization were not altered in mutant uteri indicating that the mesenchyme is capable of responding to E2. However, exposure of ovariectomized mutant female mice to a combined E2 and P4 hormone regimen consistent with early pregnancy revealed that mesenchymal beta-catenin is essential for indirectly opposing E2-induced epithelial proliferation by P4 and in some mice resulted in development of endometrial metaplasia. Lastly, beta-catenin is also required for the induced expression of genes that are known to play a fundamental role in decidualization such as Ihh, Ptch1, Gli1 and Muc1ConclusionsThree salient points derive from these studies. First, the findings demonstrate a mechanistic linkage between the P4 and beta-catenin signaling pathways. Second, they highlight an under appreciated role for the mesenchymal compartment in indirectly mediating P4 signaling to the epithelium, a process that intimately involves mesenchymal beta-catenin. Third, the technical feasibility of deleting genes in the mesenchymal compartment of the uterus in an effort to understand decidualization and post-natal interactions with the overlying epithelium has been demonstrated. It is concluded that beta-catenin plays an integral role in selective P4-directed epithelial-mesenchymal communication in both the estrous cycling and gravid uterus.


Molecular Human Reproduction | 2014

Hyperplasia and fibrosis in mice with conditional loss of the TSC2 tumor suppressor in Müllerian duct mesenchyme-derived myometria.

Tomoko Kaneko-Tarui; Arno E. Commandeur; Amanda L. Patterson; Justin L. DeKuiper; David Petillo; Aaron K. Styer; Jose Teixeira

Uterine leiomyomata are the most common tumors found in the female reproductive tract. Despite the high prevalence and associated morbidities of these benign tumors, little is known about the molecular basis of uterine leiomyoma development and progression. Loss of the Tuberous Sclerosis 2 (TSC2) tumor suppressor has been proposed as a mechanism important for the etiology of uterine leiomyomata based on the Eker rat model. However, conflicting evidence showing increased TSC2 expression has been reported in human uterine leiomyomata, suggesting that TSC2 might not be involved in the pathogenesis of this disorder. We have produced mice with conditional deletion of the Tsc2 gene in the myometria to determine whether loss of TSC2 leads to leiomyoma development in murine uteri. Myometrial hyperplasia and increased collagen deposition was observed in Tsc2(cKO) mice compared with control mice, but no leiomyomata were detected by post-natal week 24. Increased signaling activity of mammalian target of rapamycin complex 1, which is normally repressed by TSC2, was also detected in the myometria of Tsc2(cKO) mice. Treatment of the mutant mice with rapamycin significantly inhibited myometrial expansion, but treatment with the progesterone receptor modulator, mifepristone, did not. The ovaries of the Tsc2(cKO) mice appeared normal, but half the mice were infertile and most of the other half became infertile after a single litter, which was likely due to oviductal blockage. Our study shows that although TSC2 loss alone does not lead to leiomyoma development, it does lead to myometrial hyperplasia and fibrosis.


Molecular Reproduction and Development | 2012

Gene profiling of inflammatory genes in day 18 endometria from pregnant and non‐pregnant mares

Amanda L. Patterson; E.L. Squires; Thomas R. Hansen; Gerrit J. Bouma; Jason E. Bruemmer

Maternal recognition of pregnancy is a physiological process that primarily describes endometrial responses to a conceptus. Recognition of a conceptus prevents the release of prostaglandin F2α, thereby ensuring survival of the corpus luteum and continued progesterone production. Exactly how this occurs in the mare is poorly understood. Because prostaglandin F2α is a pro‐inflammatory hormone, we hypothesized that differential gene expression in the endometrium at the time of maternal recognition reflects an anti‐inflammatory event leading to decreased prostaglandin F2α secretion. Mares were inseminated, and endometrial biopsies were recovered from pregnant mares on Day 18 post‐ovulation. In subsequent estrous cycles, mares were not inseminated and Day 18 post‐ovulation endometrial biopsies were collected (non‐pregnant control, matched per individual). Endometrial gene expression profiles were examined by screening an Affymetrix equine GeneChip containing probes specific for genes related to inflammatory processes. Microarray analysis revealed 118 genes that were up‐regulated and 93 genes that were down‐regulated (P < 0.001) at least 1.5‐fold in the endometrium of pregnant versus non‐pregnant mares. Quantitative, real‐time RT‐PCR confirmed the microarray results for three up‐regulated genes homologous to TSC22D3, PPAPDC2, and KLF6, and three down‐regulated genes homologous to ESR1, MARCKSL1, and EPSTI1 (P < 0.05). It is concluded that the presence of the equine embryo induces differential gene expression in the endometrium of Day 18 pregnant mares, and that these genes are associated with inflammatory processes and pathways involving cellular growth and proliferation. The results from this study provide important new insights into endometrial gene expression in response to early equine pregnancy. Mol. Reprod. Dev. 79: 777–784, 2012.


PLOS ONE | 2017

Cervical HSV-2 infection causes cervical remodeling and increases risk for ascending infection and preterm birth

Devin McGee; Arianna Smith; Sharra Poncil; Amanda L. Patterson; Alison I. Bernstein; Karen Racicot

Preterm birth (PTB), or birth before 37 weeks gestation, is the leading cause of neonatal mortality worldwide. Cervical viral infections have been established as risk factors for PTB in women, although the mechanism leading to increased risk is unknown. Using a mouse model of pregnancy, we determined that intra-vaginal HSV2 infection caused increased rates of preterm birth following an intra-vaginal bacterial infection. HSV2 infection resulted in histological changes in the cervix mimicking cervical ripening, including significant collagen remodeling and increased hyaluronic acid synthesis. Viral infection also caused aberrant expression of estrogen and progesterone receptor in the cervical epithelium. Further analysis using human ectocervical cells demonstrated a role for Src kinase in virus-mediated changes in estrogen receptor and hyaluronic acid expression. In conclusion, HSV2 affects proteins involved in tissue hormone responsiveness, causes significant changes reminiscent of premature cervical ripening, and increases risk of preterm birth. Studies such as this improve our chances of identifying clinical interventions in the future.


Journal of Endocrinology | 2017

Gain-of-function β-catenin in the uterine mesenchyme leads to impaired implantation and decidualization

Amanda L. Patterson; Jamieson Pirochta; Stephanie Y Tufano; Jose Teixeira

Embryo implantation and endometrial decidualization are critical events that occur during early pregnancy in humans and mice, and perturbation in either can result in infertility. WNT signaling through the canonical β-catenin pathway plays a pivotal role in embryonic Müllerian duct development, postnatal uterine maturation and establishment of pregnancy. Loss of β-catenin in the Müllerian duct mesenchyme (MDM)-derived stroma and myometrium results in impaired decidualization and infertility, whereas gain-of-function (GOF) results in the formation of mesenchymal tumors and sub-fertility attributed to malformed oviducts. We hypothesized that GOF β-catenin further contributes to sub-fertility through improper stromal and epithelial cell signaling during embryo implantation and decidualization. We show that mice with GOF β-catenin in MDM-derived stroma and myometrium have reduced implantation sites after embryo transfer and decreased decidualization. On day 4.5 of pseudopregnancy or in mice treated with progesterone and estrogen to mimic early pregnancy, the estrogen-LIF-ERK and progesterone-IHH pathways remain predominantly intact in GOF β-catenin mice; however, JAK/STAT signaling is altered. pSTAT3 is significantly reduced in GOF β-catenin mice and expression of downstream epithelial junctional complex factors, Ctnna1 and Cldn1, is increased. We also show that purified stromal cells from GOF β-catenin uteri, when removed from epithelial cell influence and provided with the appropriate hormonal stimuli, are able to decidualize in vitro indicating that the cells are intrinsically capable of decidualization. Taken together, these results suggest that dysregulated β-catenin activity in the stroma affects epithelial cell STAT3 signaling and ultimately embryo implantation and stromal decidualization.


Molecular Cancer Therapeutics | 2018

Nuclear PTEN localization contributes to DNA damage repair in Endometrial cancer and could have a diagnostic benefit for therapeutic management of the disease.

Ananda Mukherjee; Amanda L. Patterson; Jitu W. George; Tyler J. Carpenter; Zachary Madaj; Galen Hostetter; John I. Risinger; Jose Teixeira

Endometrial adenocarcinoma (EndoCA) is the most common gynecologic cancer type in the United States, and its incidence is increasing. The majority of patients are disease-free after surgical resection of stage I tumors, which is often followed by radiotherapy, but most patients with advanced disease recur and have a poor prognosis, largely because the tumors become refractory to cytotoxic chemotherapies. PTEN, a commonly mutated tumor suppressor in EndoCAs, is well known for its ability to inhibit the AKT/mTOR signaling pathway. Nuclear functions for PTEN have been proposed as well, but whether those affect EndoCA development, progression, or outcomes is not well understood. Using immunohistochemistry, nuclear PTEN expression was observed in approximately half of EndoCA patient tumors, independent of grade and cytoplasmic PTEN expression. Higher levels of the DNA damage response (DDR) marker, γH2AX, were observed by immunohistochemistry and immunofluorescence in human EndoCA tumor sections that were PTEN-negative, in murine EndoCA tissues that were genetically modified to be PTEN-null, and in Ishikawa EndoCA cells, which do not express endogenous PTEN. Overexpression of exogenous PTEN-WT or PTEN-NLS, a modified PTEN with an added nuclear localization signal, significantly improved both DDR and G2–M transition in Ishikawa cells treated with a DNA-damaging agent. Whereas PARP inhibition with Olaparib was not as effective in Ishikawa cells expressing native or PTEN-NLS, inhibition with Talazoparib was not affected by PTEN overexpression. These results suggest that nuclear PTEN subcellular localization in human EndoCA could be diagnostic when considering DDR therapeutic intervention. Mol Cancer Ther; 17(9); 1995–2003. ©2018 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Specific deletion of LKB1/Stk11 in the Müllerian duct mesenchyme drives hyperplasia of the periurethral stroma and tumorigenesis in male mice

Jitu W. George; Amanda L. Patterson; Pradeep S. Tanwar; Andre Kajdacsy-Balla; Gail S. Prins; Jose Teixeira

Significance Symptoms of benign prostatic hyperplasia (BPH) affect many older men, but the etiology of the disease is largely unknown. We show that male mice develop prostatic stromal hyperplasia accompanied by lower urinary tract symptoms that appear similar to BPH with conditional homozygous deletion of the tumor suppressor gene, Stk11 (serine threonine kinase 11), in the Müllerian duct mesenchyme (MDM), which regresses in males during early fetal development. Cell lineage tracing studies confirmed that cells from the caudal MDM contribute to the stromal cell population of the dorsal periurethral area, which has been compared with the transition zone of the human prostate. These studies show that some of the stromal cells of the prostate are MD-derived, and that their mutation can lead to BPH. Nearly all older men will experience lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH), the etiology of which is not well understood. We have generated Stk11CKO mice by conditional deletion of the liver kinase B1 (LKB1) tumor suppressor gene, Stk11 (serine threonine kinase 11), in the fetal Müllerian duct mesenchyme (MDM), the caudal remnant of which is thought to be assimilated by the urogenital sinus primordial mesenchyme in males during fetal development. We show that MDM cells contribute to the postnatal stromal cells at the dorsal aspect of the prostatic urethra by lineage tracing. The Stk11CKO mice develop prostatic hyperplasia with bladder outlet obstruction, most likely because of stromal expansion. The stromal areas from prostates of Stk11CKO mice, with or without significant expansion, were estrogen receptor positive, which is consistent with both MD mesenchyme-derived cells and the purported importance of estrogen receptors in BPH development and/or progression. In some cases, stromal hyperplasia was admixed with epithelial metaplasia, sometimes with keratin pearls, consistent with squamous cell carcinomas. Mice with conditional deletion of both Stk11 and Pten developed similar features as the Stk11CKO mice, but at a highly accelerated rate, often within the first few months after birth. Western blot analyses showed that the loss of LKB1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) induces activation of the phospho-5′ adenosine monophosphate-activated protein kinase and phospho-AKT serine/threonine kinase 1 signaling pathways, as well as increased total and active β-catenin. These results suggest that activation of these signaling pathways can induce hyperplasia of the MD stroma, which could play a significant role in the etiology of human BPH.


Stem Cells and Development | 2018

Label-retaining, putative mesenchymal stem cells contribute to repair of the myometrium during uterine involution.

Amanda L. Patterson; Jitu W. George; Anindita Chatterjee; Tyler J. Carpenter; Emily Wolfrum; James K. Pru; Jose Teixeira

Collaboration


Dive into the Amanda L. Patterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James K. Pru

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jitu W. George

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy A. Pru

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge