Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose V. Sanchez-Mut is active.

Publication


Featured researches published by Jose V. Sanchez-Mut.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Distinct DNA methylomes of newborns and centenarians

Holger Heyn; Ning Li; Humberto J. Ferreira; Sebastian Moran; David G. Pisano; Antonio Gomez; Javier Díez; Jose V. Sanchez-Mut; Fernando Setien; F. Javier Carmona; Annibale Alessandro Puca; Sergi Sayols; Miguel Angel Pujana; Jordi Serra-Musach; Isabel Iglesias-Platas; Francesc Formiga; Agustín F. Fernández; Mario F. Fraga; Simon Heath; Alfonso Valencia; Ivo Gut; Jun Wang; Manel Esteller

Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine—phosphate—guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level.


Lancet Neurology | 2009

Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies

Rocío G. Urdinguio; Jose V. Sanchez-Mut; Manel Esteller

Epigenetic mechanisms such as DNA methylation and modifications to histone proteins regulate high-order DNA structure and gene expression. Aberrant epigenetic mechanisms are involved in the development of many diseases, including cancer. The neurological disorder most intensely studied with regard to epigenetic changes is Rett syndrome; patients with Rett syndrome have neurodevelopmental defects associated with mutations in MeCP2, which encodes the methyl CpG binding protein 2, that binds to methylated DNA. Other mental retardation disorders are also linked to the disruption of genes involved in epigenetic mechanisms; such disorders include alpha thalassaemia/mental retardation X-linked syndrome, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. Moreover, aberrant DNA methylation and histone modification profiles of discrete DNA sequences, and those at a genome-wide level, have just begun to be described for neurodegenerative disorders such as Alzheimers disease, Parkinsons disease, and Huntingtons disease, and in other neurological disorders such as multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis. In this Review, we describe epigenetic changes present in neurological diseases and discuss the therapeutic potential of epigenetic drugs, such as histone deacetylase inhibitors.


Genome Research | 2012

A DNA methylation fingerprint of 1628 human samples

Augustin F. Fernandez; Yassen Assenov; José I. Martín-Subero; Balázs Bálint; Reiner Siebert; Hiroaki Taniguchi; Hiroyuki Yamamoto; Manuel Hidalgo; Aik Choon Tan; Oliver Galm; Isidre Ferrer; Montse Sanchez-Cespedes; Alberto Villanueva; Javier Carmona; Jose V. Sanchez-Mut; María Berdasco; Victor Moreno; Gabriel Capellá; David Monk; Esteban Ballestar; Santiago Ropero; Ramon Martinez; Marta Sanchez-Carbayo; Felipe Prosper; Xabier Agirre; Mario F. Fraga; Osvaldo Graña; Luis A. Pérez-Jurado; Jaume Mora; Susana Puig

Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases.


Genome Research | 2014

Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

Franck Court; Chiharu Tayama; Valeria Romanelli; Alex Martin-Trujillo; Isabel Iglesias-Platas; Kohji Okamura; Naoko Sugahara; Carlos Simón; Harry Moore; Julie V. Harness; Hans S. Keirstead; Jose V. Sanchez-Mut; Eisuke Kaneki; Pablo Lapunzina; Hidenobu Soejima; Norio Wake; Manel Esteller; Tsutomu Ogata; Kenichiro Hata; Kazuhiko Nakabayashi; David Monk

Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.


Brain | 2013

DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

Jose V. Sanchez-Mut; Esther Aso; Nicolas Panayotis; Ira T. Lott; Mara Dierssen; Alberto Rábano; Rocío G. Urdinguio; Agustín F. Fernández; Aurora Astudillo; José I. Martín-Subero; Balázs Bálint; Mario F. Fraga; Antonio Gomez; Cecile Gurnot; Jean-Christophe Roux; Jesús Avila; Takao K. Hensch; Isidro Ferrer; Manel Esteller

The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.


Genome Biology | 2016

Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer

Holger Heyn; Enrique Vidal; Humberto J. Ferreira; Miguel Vizoso; Sergi Sayols; Antonio Gomez; Sebastian Moran; Raquel Boque-Sastre; Sonia Guil; Anna Martínez-Cardús; Charles Y. Lin; Romina Royo; Jose V. Sanchez-Mut; Ramon Martinez; Marta Gut; David Torrents; Modesto Orozco; Ivo Gut; Richard A. Young; Manel Esteller

BackgroundOne of the hallmarks of cancer is the disruption of gene expression patterns. Many molecular lesions contribute to this phenotype, and the importance of aberrant DNA methylation profiles is increasingly recognized. Much of the research effort in this area has examined proximal promoter regions and epigenetic alterations at other loci are not well characterized.ResultsUsing whole genome bisulfite sequencing to examine uncharted regions of the epigenome, we identify a type of far-reaching DNA methylation alteration in cancer cells of the distal regulatory sequences described as super-enhancers. Human tumors undergo a shift in super-enhancer DNA methylation profiles that is associated with the transcriptional silencing or the overactivation of the corresponding target genes. Intriguingly, we observe locally active fractions of super-enhancers detectable through hypomethylated regions that suggest spatial variability within the large enhancer clusters. Functionally, the DNA methylomes obtained suggest that transcription factors contribute to this local activity of super-enhancers and that trans-acting factors modulate DNA methylation profiles with impact on transforming processes during carcinogenesis.ConclusionsWe develop an extensive catalogue of human DNA methylomes at base resolution to better understand the regulatory functions of DNA methylation beyond those of proximal promoter gene regions. CpG methylation status in normal cells points to locally active regulatory sites at super-enhancers, which are targeted by specific aberrant DNA methylation events in cancer, with putative effects on the expression of downstream genes.


Translational Psychiatry | 2016

Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns.

Jose V. Sanchez-Mut; Holger Heyn; Enrique Vidal; Sebastian Moran; Sergi Sayols; Raul Delgado-Morales; Matthew D. Schultz; Belén Ansoleaga; Paula Garcia-Esparcia; Meritxell Pons-Espinal; M. M. de Lagran; Joaquín Dopazo; Alberto Rábano; Jesús Avila; Mara Dierssen; Ira T. Lott; Isidro Ferrer; J Ecker; Manel Esteller

Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimers disease, dementia with Lewy bodies, Parkinsons disease and Alzheimer-like neurodegenerative profile associated with Downs syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies.


Epigenetics | 2012

Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient

Holger Heyn; Enrique Vidal; Sergi Sayols; Jose V. Sanchez-Mut; Sebastian Moran; Ignacio Medina; Juan Sandoval; Laia Simó-Riudalbas; Karolina Szczesna; Dori Huertas; Sole Gatto; Maria Rosaria Matarazzo; Joaquín Dopazo; Manel Esteller

The immunodeficiency, centromere instability and facial anomalies (ICF) syndrome is associated to mutations of the DNA methyl-transferase DNMT3B, resulting in a reduction of enzyme activity. Aberrant expression of immune system genes and hypomethylation of pericentromeric regions accompanied by chromosomal instability were determined as alterations driving the disease phenotype. However, so far only technologies capable to analyze single loci were applied to determine epigenetic alterations in ICF patients. In the current study, we performed whole-genome bisulphite sequencing to assess alteration in DNA methylation at base pair resolution. Genome-wide we detected a decrease of methylation level of 42%, with the most profound changes occurring in inactive heterochromatic regions, satellite repeats and transposons. Interestingly, transcriptional active loci and ribosomal RNA repeats escaped global hypomethylation. Despite a genome-wide loss of DNA methylation the epigenetic landscape and crucial regulatory structures were conserved. Remarkably, we revealed a mislocated activity of mutant DNMT3B to H3K4me1 loci resulting in hypermethylation of active promoters. Functionally, we could associate alterations in promoter methylation with the ICF syndrome immunodeficient phenotype by detecting changes in genes related to the B-cell receptor mediated maturation pathway.


Frontiers in Behavioral Neuroscience | 2015

Epigenetic Alterations in Alzheimer's Disease

Jose V. Sanchez-Mut; Johannes Gräff

Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.


Cell Reports | 2014

Linkage of DNA methylation quantitative trait loci to human cancer risk.

Holger Heyn; Sergi Sayols; Catia Moutinho; Enrique Vidal; Jose V. Sanchez-Mut; Olafur A. Stefansson; Ernest Nadal; Sebastian Moran; Jorunn E. Eyfjörd; Eva González-Suárez; Miguel Angel Pujana; Manel Esteller

Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL) have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.

Collaboration


Dive into the Jose V. Sanchez-Mut's collaboration.

Top Co-Authors

Avatar

Manel Esteller

Catalan Institution for Research and Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Holger Heyn

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Gräff

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Martínez-Cardús

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge