José Vicente Segura
Universidad Miguel Hernández de Elche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Vicente Segura.
Fuzzy Sets and Systems | 2007
Enriqueta Vercher; José D. Bermúdez; José Vicente Segura
This paper presents two fuzzy portfolio selection models where the objective is to minimize the downside risk constrained by a given expected return. We assume that the rates of returns on securities are approximated as LR-fuzzy numbers of the same shape, and that the expected return and risk are evaluated by interval-valued means. We establish the relationship between those mean-interval definitions for a given fuzzy portfolio by using suitable ordering relations. Finally, we formulate the portfolio selection problem as a linear program when the returns on the assets are of trapezoidal form.
Fuzzy Sets and Systems | 2012
José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
This paper presents a new procedure that extends genetic algorithms from their traditional domain of optimization to fuzzy ranking strategy for selecting efficient portfolios of restricted cardinality. The uncertainty of the returns on a given portfolio is modeled using fuzzy quantities and a downside risk function is used to describe the investors aversion to risk. The fitness functions are based both on the value and the ambiguity of the trapezoidal fuzzy number which represents the uncertainty on the return. The soft-computing approach allows us to consider uncertainty and vagueness in databases and also to incorporate subjective characteristics into the portfolio selection problem. We use a data set from the Spanish stock market to illustrate the performance of our approach to the portfolio selection problem.
European Journal of Operational Research | 2001
José Vicente Segura; Enriqueta Vercher
Abstract The objective of this paper is to determine the optimal forecasting for the Holt–Winters exponential smoothing model using spreadsheet modeling. This forecasting procedure is especially useful for short-term forecasts for series of sales data or levels of demand for goods. The non-linear programming problem associated with this forecasting model is formulated and a spreadsheet model is used to solve the problem of optimization efficiently. Also, a spreadsheet makes it possible to work in parallel with various objective functions (measures of forecast errors) and different procedures for calculating the initial values of the components of the model. Using a scenario analysis, the set of local minima obtained may be visualized. We have solved some examples in order to illustrate this approach.
Journal of Applied Statistics | 2007
José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
Abstract This paper provides a formulation for the additive Holt–Winters forecasting procedure that simplifies both obtaining maximum likelihood estimates of all unknowns, smoothing parameters and initial conditions, and the computation of point forecasts and reliable predictive intervals. The stochastic component of the model is introduced by means of additive, uncorrelated, homoscedastic and Normal errors, and then the joint distribution of the data vector, a multivariate Normal distribution, is obtained. In the case where a data transformation was used to improve the fit of the model, cumulative forecasts are obtained here using a Monte-Carlo approximation. This paper describes the method by applying it to the series of monthly total UK air passengers collected by the Civil Aviation Authority, a long time series from 1949 to the present day, and compares the resulting forecasts with those obtained in previous studies.
Computational Statistics & Data Analysis | 2006
José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
Exponential procedures are widely used as forecasting techniques for inventory control and business planning. A number of modifications to the generalized exponential smoothing (Holt-Winters) approach to forecasting univariate time series is presented, which have been adapted into a tool for decision support systems. This methodology unifies the phases of estimation and model selection into just one optimization framework which permits the identification of robust solutions. This procedure may provide forecasts from different versions of exponential smoothing by fitting the updated formulas of Holt-Winters and selects the best method using a fuzzy multicriteria approach. The elements of the set of local minima of the non-linear programming problems allow us to build the membership functions of the conflicting objectives. It is compared to other forecasting methods on the 111 series from the M-competition.
Journal of the Operational Research Society | 2006
José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
We address the problem of forecasting real time series with a proportion of zero values and a great variability among the nonzero values. In order to calculate forecasts for a time series, the model coefficients must be estimated. The appropriate choice of values for the smoothing parameters in exponential smoothing methods relies on the minimization of the fitting errors of historical data. We adapt the generalized Holt–Winters formulation so that it can consider the starting values of the local components of level, trend and seasonality as decision variables of the nonlinear programming problem associated with this forecasting procedure. A spreadsheet model is used to solve the problems of optimization efficiently. We show that our approach produces accurate forecasts with little data per product.
European Journal of Operational Research | 2015
José L. Ruiz; José Vicente Segura; Inmaculada Sirvent
Benchmarking and target setting should identify best practices that are not only technically achievable but also desirable in the light of prior knowledge and expert opinion. It should also be considered the possibility of finding targets by minimizing the gap between actual and efficient performances, so that the units under evaluation can achieve these targets with less effort. We extend here the DEA models that provide closest targets for use when expert preferences are incorporated into the analysis. This approach is illustrated by applying the model proposed to the evaluation of educational performance of public Spanish universities.
ieee international conference on fuzzy systems | 2007
José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
In this paper we present a fuzzy ranking procedure for the portfolio selection problem. The uncertainty on the returns of each portfolio is approximated by means of a trapezoidal fuzzy number. The expected return and risk of the portfolio are then characteristics of that fuzzy number. A rank index that accounts for both expected return and risk is defined, allowing the decision-maker to compare different portfolios. The paper ends with an application of that fuzzy ranking strategy to the Spanish stock market.
Journal of the Operational Research Society | 2010
José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
Exponential smoothing methods are widely used as forecasting techniques in inventory systems and business planning, where reliable prediction intervals are also required for a large number of series. This paper describes a Bayesian forecasting approach based on the Holt–Winters model, which allows obtaining accurate prediction intervals. We show how to build them incorporating the uncertainty due to the smoothing unknowns using a linear heteroscedastic model. That linear formulation simplifies obtaining the posterior distribution on the unknowns; a random sample from such posterior, which is not analytical, is provided using an acceptance sampling procedure and a Monte Carlo approach gives the predictive distributions. On the basis of this scheme, point-wise forecasts and prediction intervals are obtained. The accuracy of the proposed Bayesian forecasting approach for building prediction intervals is tested using the 3003 time series from the M3-competition.
Archive | 2010
Ana Corberán-Vallet; José D. Bermúdez; José Vicente Segura; Enriqueta Vercher
This chapter presents a forecasting support system based on the exponential smoothing scheme to forecast time-series data. Exponential smoothing methods are simple to apply, which facilitates computation and considerably reduces data storage requirements. Consequently, they are widely used as forecasting techniques in inventory systems and business planning. After selecting the most adequate model to replicate patterns of the time series under study, the system provides accurate forecasts which can play decisive roles in organizational planning, budgeting and performance monitoring.